List of whale vocalizations

Last updated

Spectrogram of humpback whale vocalizations. Detail is shown for the first 24 seconds of the 37-second recording of humpback whale song. Spectrogram generated with Fatpigdog's PC based Real Time FFT Spectrum Analyzer. HumBack2.jpg
Spectrogram of humpback whale vocalizations. Detail is shown for the first 24 seconds of the 37-second recording of humpback whale song. Spectrogram generated with Fatpigdog's PC based Real Time FFT Spectrum Analyzer.

Whale vocalizations are the sounds made by whales to communicate. The word "song" is used in particular to describe the pattern of regular and predictable sounds made by some species of whales (notably the humpback and bowhead whales) in a way that is reminiscent of human singing.

Contents

Humans produce sound by expelling air through the larynx. The vocal cords within the larynx open and close as necessary to separate the stream of air into discrete pockets of air. These pockets are shaped by the throat, tongue, and lips into the desired sound.

Cetacean sound production differs markedly from this mechanism. The precise mechanism differs in the two major suborders of cetaceans: the Odontoceti (toothed whales including dolphins) and the Mysticeti (baleen whales including the largest whales, such as the blue whale).

Blue whale (Balaenoptera musculus)

Estimates made by Cummings and Thompson (1971) [1] and Richardson et al. (1995) [2] suggest that source level of sounds made by blue whales are between 155 and 188 decibels with reference to one micropascal metre. All blue whale groups make calls at a fundamental frequency of between 10 and 40 Hz, and the lowest frequency sound a human can typically perceive is 20 Hz. Blue whale calls last between ten and thirty seconds. Additionally blue whales off the coast of Sri Lanka have been recorded repeatedly making "songs" of four notes duration lasting about two minutes each, reminiscent of the well-known humpback whale songs.

All of the baleen whale sound files on this page (with the exception of the humpback vocalizations) are reproduced at 10x speed to bring the sound into the human auditory band.

Vocalizations produced by the Eastern North Pacific population have been well studied. This population produces long-duration, low frequency pulses ("A") and tonal calls ("B"), upswept tones that precede type B calls ("C"), moderate-duration downswept tones ("D"), and variable amplitude-modulated and frequency-modulated sounds. [3] [4] [5] [6] A and B calls are often produced in repeated co-occurring sequences as song only by males, suggesting a reproductive function. [6] [7] D calls are produced by both sexes during social interactions while foraging and may considered multi-purpose contact calls. [7] [8] [9] Because the calls have also been recorded from blue whale trios from in a putative reproductive context, it has been recently suggested that this call has different functions. [10] The blue whale call recorded off Sri Lanka is a three‐unit phrase. The first unit is a pulsive call ranging 19.8 to 43.5 Hz, lasting 17.9 ± 5.2 s. The second unit is an FM upsweep 55.9 to 72.4 Hz lasting 13.8 ± 1.1 s. The final unit is a long (28.5 ± 1.6 s) tone that sweeps from 108 to 104.7 Hz. [11] The blue whale call recorded off Madagascar, a two‐unit phrase, [12] starts with 5–7 pulses with a center frequency of 35.1 ± 0.7 Hz and duration of 4.4 ± 0.5 s followed by a 35 ± 0 Hz tone lasting 10.9 ± 1.1 s. [11] In the Southern Ocean, blue whales calls last roughly 18 seconds and consist of a 9-s-long, 27 Hz tone, followed by a 1-s downsweep to 19 Hz, and another downsweep to 18 Hz. [13] [14] They also produce short, 1–4 s duration, frequency-modulated calls ranging in frequency between 80 and 38 Hz. [14] [15]

At least seven blue whale song types have been shifting linearly downward in tonal frequency over time, though at different rates. [16] [17] [18]

The Eastern North Pacific blue whale tonal frequency is 31% lower than it was in the early 1960s. [16] [17] The frequency of pygmy blue whales in the Antarctic has steadily decreased at a rate of a few tenths of hertz per year since 2002. [18] One hypothesis is that as blue whale populations recover from whaling, this is increasing sexual selection pressure (i.e., lower frequency indicates larger body size). [17]

Fin whale (Balaenoptera physalus)

Like other whales, the male fin whale has been observed to make long, loud, low-frequency sounds. [19] Most sounds are frequency-modulated (FM) down-swept infrasonic pulses from 16 to 40  hertz frequency (the range of sounds that most humans can hear falls between 20 hertz and 20 kilohertz). Each sound lasts between one and two seconds, and various combinations of sounds occur in patterned sequences lasting 7 to 15 minutes each. These sequences are then repeated in bouts lasting up to many days. [20]

Bowhead whale (Balaena mysticetus)

Bowhead whales are highly vocal [21] and use low frequency (<1000 Hz) sounds to communicate while travelling, feeding, and socialising. Intense calls for communication and navigation are produced especially during migration season. During breeding season, bowheads make long, complex, variable songs for mating calls. [22] Many tens of distinct songs are sung by a population in a single season. [23] From 2010 through to 2014, near Greenland, 184 distinct songs were recorded from a population of around 300 animals. [24]

Humpback whale (Megaptera novaeangliae)

The humpback whale is well known for its long and complex song. Humpbacks repeat patterns of low notes that vary in amplitude and frequency in consistent patterns over a period of hours or even days. Only male humpbacks sing, so it was at first assumed that the songs were solely for courting. While the primary purpose of whale song may be to attract females, it is almost certain that whale song serves myriad purposes.

Orca (killer whale) (Orcinus orca)

Minke whale (Balaenoptera spp.)

See also

Related Research Articles

<span class="mw-page-title-main">Blue whale</span> Baleen whale, largest animal ever known

The blue whale is a marine mammal and a baleen whale. Reaching a maximum confirmed length of 29.9 m (98 ft) and weighing up to 199 t, it is the largest animal known ever to have existed. The blue whale's long and slender body can be of various shades of greyish-blue on its upper surface and somewhat lighter underneath. Four subspecies are recognized: B. m. musculus in the North Atlantic and North Pacific, B. m. intermedia in the Southern Ocean, B. m. brevicauda in the Indian Ocean and South Pacific Ocean, and B. m. indica in the Northern Indian Ocean. There is a population in the waters off Chile that may constitute a fifth subspecies.

<span class="mw-page-title-main">Cetacea</span> Infraorder of mammals

Cetacea is an infraorder of aquatic mammals belonging to the order Artiodactyla that includes whales, dolphins and porpoises. Key characteristics are their fully aquatic lifestyle, streamlined body shape, often large size and exclusively carnivorous diet. They propel themselves through the water with powerful up-and-down movement of their tail which ends in a paddle-like fluke, using their flipper-shaped forelimbs to maneuver.

<span class="mw-page-title-main">Whale</span> Informal group of large marine mammals

Whales are a widely distributed and diverse group of fully aquatic placental marine mammals. As an informal and colloquial grouping, they correspond to large members of the infraorder Cetacea, i.e. all cetaceans apart from dolphins and porpoises. Dolphins and porpoises may be considered whales from a formal, cladistic perspective. Whales, dolphins and porpoises belong to the order Cetartiodactyla, which consists of even-toed ungulates. Their closest non-cetacean living relatives are the hippopotamuses, from which they and other cetaceans diverged about 54 million years ago. The two parvorders of whales, baleen whales (Mysticeti) and toothed whales (Odontoceti), are thought to have had their last common ancestor around 34 million years ago. Mysticetes include four extant (living) families: Balaenopteridae, Balaenidae, Cetotheriidae, and Eschrichtiidae. Odontocetes include the Monodontidae, Physeteridae, Kogiidae, and Ziphiidae, as well as the six families of dolphins and porpoises which are not considered whales in the informal sense.

<span class="mw-page-title-main">Fin whale</span> Large baleen whale species

The fin whale, also known as the finback whale or common rorqual, is a species of baleen whale and the second-longest cetacean after the blue whale. The biggest individual reportedly measured 26 m (85 ft) in length, with a maximum recorded weight of 77 to 81 tonnes. The fin whale's body is long, slender and brownish-gray in color, with a paler underside to appear less conspicuous from below (countershading).

<span class="mw-page-title-main">Baleen whale</span> Whales that strain food from the water using baleen

Baleen whales, also known as whalebone whales, are marine mammals of the parvorder Mysticeti in the infraorder Cetacea, which use keratinaceous baleen plates in their mouths to sieve planktonic creatures from the water. Mysticeti comprises the families Balaenidae, Balaenopteridae (rorquals), Eschrichtiidae and Cetotheriidae. There are currently 16 species of baleen whales. While cetaceans were historically thought to have descended from mesonychians, molecular evidence instead supports them as a clade of even-toed ungulates (Artiodactyla). Baleen whales split from toothed whales (Odontoceti) around 34 million years ago.

<span class="mw-page-title-main">Humpback whale</span> Large baleen whale species

The humpback whale is a species of baleen whale. It is a rorqual and is the only species in the genus Megaptera. Adults range in length from 14–17 m (46–56 ft) and weigh up to 40 metric tons. The humpback has a distinctive body shape, with long pectoral fins and tubercles on its head. It is known for breaching and other distinctive surface behaviors, making it popular with whale watchers. Males produce a complex song typically lasting 4 to 33 minutes.

<span class="mw-page-title-main">Minke whale</span> Species of whale

The minke whale, or lesser rorqual, is a species complex of baleen whale. The two species of minke whale are the common minke whale and the Antarctic minke whale. The minke whale was first described by the Danish naturalist Otto Fabricius in 1780, who assumed it must be an already known species and assigned his specimen to Balaena rostrata, a name given to the northern bottlenose whale by Otto Friedrich Müller in 1776. In 1804, Bernard Germain de Lacépède described a juvenile specimen of Balaenoptera acuto-rostrata. The name is a partial translation of Norwegian minkehval, possibly after a Norwegian whaler named Meincke, who mistook a northern minke whale for a blue whale.

<span class="mw-page-title-main">Antarctic minke whale</span> Species of mammal

The Antarctic minke whale or southern minke whale is a species of minke whale within the suborder of baleen whales. It is the second smallest rorqual after the common minke whale and the third smallest baleen whale. Although first scientifically described in the mid-19th century, it was not recognized as a distinct species until the 1990s. Once ignored by the whaling industry due to its small size and low oil yield, the Antarctic minke was able to avoid the fate of other baleen whales and maintained a large population into the 21st century, numbering in the hundreds of thousands. Surviving to become the most abundant baleen whale in the world, it is now one of the mainstays of the industry alongside its cosmopolitan counterpart the common minke. It is primarily restricted to the Southern Hemisphere and feeds mainly on euphausiids.

<i>Balaenoptera</i> Genus of mammals

Balaenoptera is a genus of rorquals containing eight extant species. Balaenoptera comprises all but two of the extant species in its family ; the genus is currently polyphyletic, with the two aforementioned species being phylogenetically nested within it.

<span class="mw-page-title-main">Sei whale</span> Third-largest species of baleen whale

The sei whale is a baleen whale. It is one of ten rorqual species, and the third-largest member after the blue and fin whales. It can grow to 19.5 m (64 ft) in length and weigh as much as 28 t. Two subspecies are recognized: B. b. borealis and B. b. schlegelii. The whale's ventral surface has sporadic markings ranging from light grey to white, and its body is usually dark steel grey in colour. It is among the fastest of all cetaceans, and can reach speeds of up to 50 km/h (31 mph) over short distances. 

<span class="mw-page-title-main">Whale vocalization</span> Sounds produced by whales

Whales use a variety of sounds for communication and sensation. The mechanisms used to produce sound vary from one family of cetaceans to another. Marine mammals, including whales, dolphins, and porpoises, are much more dependent on sound than land mammals due to the limited effectiveness of other senses in water. Sight is less effective for marine mammals because of the way particulates in the ocean scatter light. Smell is also limited, as molecules diffuse more slowly in water than in air, which makes smelling less effective. However, the speed of sound is roughly four times greater in water than in the atmosphere at sea level. As sea mammals are so dependent on hearing to communicate and feed, environmentalists and cetologists are concerned that they are being harmed by the increased ambient noise in the world's oceans caused by ships, sonar and marine seismic surveys.

<span class="mw-page-title-main">Cetacean surfacing behaviour</span> Cetacean movement types

Cetacean surfacing behaviour is a grouping of movement types that cetaceans make at the water's surface in addition to breathing. Cetaceans have developed and use surface behaviours for many functions such as display, feeding and communication. All regularly observed members of the order Cetacea, including whales, dolphins and porpoises, show a range of surfacing behaviours.

The pygmy blue whale is a subspecies of the blue whale found in the Indian Ocean and the Southern Pacific Ocean.

<span class="mw-page-title-main">Bowhead whale</span> Baleen whale endemic to the Arctic

The bowhead whale is a species of baleen whale belonging to the family Balaenidae and is the only living representative of the genus Balaena. It is the only baleen whale endemic to the Arctic and subarctic waters, and is named after its characteristic massive triangular skull, which it uses to break through Arctic ice. Other common names of the species included the Greenland right whale, Arctic whale, steeple-top, and polar whale.

<span class="mw-page-title-main">Marine mammals and sonar</span>

The interactions between marine mammals and sonar have been a subject of debate since the invention of the technology.

Bio-duck is a sound recorded in the Southern Ocean, specifically in Antarctic Waters and the West Coast of Australia. It was first reported in 1960 by submarine personnel, who gave the sound its name, associating it with that of a duck. Once dubbed as the “largest still unresolved mysteries of the Southern Ocean”, the origin of the sound remained a mystery for decades until 2014, when it was concluded that the sound originated from Antarctic minke whales.

References

  1. W.C. Cummings & P.O. Thompson (1971). "Underwater sounds from the blue whale Balaenoptera musculus". Journal of the Acoustical Society of America . 50 (4): 1193–1198. doi:10.1121/1.1912752.
  2. W.J. Richardson; C.R. Greene; C.I. Malme; D.H. Thomson (1995). Marine mammals and noise. Academic Press, Inc., San Diego, CA. ISBN   0-12-588441-9.
  3. Thompson, P. O.; Findley, L. T.; Vidal, O.; Cummings, W. C.; et al. (1996). "Underwater sounds of blue whales, Balaenoptera musculus, in the Gulf of California, Mexico". Marine Mammal Science. 13 (2): 288–293. doi:10.1111/j.1748-7692.1996.tb00578.x.
  4. Aroyan, J. L.; McDonald, M. A.; Webb, S. C.; Hildebrand, J. A.; Clark, D. S.; Laitman, J. T.; Reidenberg, J. S. (2000). "Acoustic models of sound production and propagation". In Au, W. W. A.; Popper, A.; Fay, R. N. (eds.). Hearing by whales and dolphins. New York: Springer-Verlag. pp. 409–469.
  5. Thode, A. M.; D'Spain, G. L.; Kuperman, W. A. (2000). "Matched-field processing, geoacoustic inversion, and source signature recovery of blue whale vocalizations". Journal of the Acoustical Society of America. 107 (3): 1286–1300. Bibcode:2000ASAJ..107.1286T. doi:10.1121/1.428417. PMID   10738784. S2CID   25361396.
  6. 1 2 McDonald, M. A.; Calambokidis, J.; Teranishi, A. M.; Hildebrand, J. A. (2001). "The acoustic calls of blue whales off California with gender data". Journal of the Acoustical Society of America. 109 (4): 1728–1735. Bibcode:2001ASAJ..109.1728M. doi:10.1121/1.1353593. PMID   11325141.
  7. 1 2 Oleson, E. M.; Calambokidis, J.; Burgess, W. C.; McDonald, M. A.; LeDuc, C. A.; Hildebrand, J. A. (2007). "Behavioral context of call production by eastern North Pacific blue whales". Marine Ecology Progress Series. 330: 269–284. Bibcode:2007MEPS..330..269O. doi: 10.3354/meps330269 .
  8. Oleson, E. M.; Calambokidis, J.; Barlow, J.; Hildebrand, J. A. (2007). "Blue whale visual and acoustic encounter rates in the Southern California Bight". Marine Mammal Science. 23 (3): 574–597. doi:10.1111/j.1748-7692.2007.02303.x. S2CID   7335728.
  9. Lewis, L. A.; Calambokidis, J.; Stimpert, A. K.; Fahlbusch, J.; Friedlaender, A. S.; McKenna, M. F.; Mesnick, S.; Oleson, E. M.; Southall, B. L.; Szesciorka, A. S.; Sirovic, A. (2018). "Context-dependent variability in blue whale acoustic behaviour". Royal Society Open Science. 5 (8): 1080241. doi:10.1098/rsos.180241. PMC   6124089 . PMID   30225013.
  10. Schall, E.; Di Lorio, L.; Berchok, C.; Filún, D.; Bedriñana-Romano, L.; Buchan, S. J.; Van Opzeeland, I.; Sears, R.; Hucke-Gaete, R. (2019). "Visual and passive acoustic observations of blue whale trios from two distinct populations". Marine Mammal Science. 36 (1): 365–374. doi: 10.1111/mms.12643 . hdl: 1912/24953 .
  11. 1 2 Stafford, K. M.; Chapp, E.; Bohnenstiel, D.; Tolstoy, M. (2010). "Seasonal detection of three types of "pygmy" blue whale calls in the Indian Ocean". Marine Mammal Science. 27 (4): 828–840. doi:10.1111/j.1748-7692.2010.00437.x.
  12. Ljungblad, D. K.; Clark, C. W.; Shimada, H. (1998). A comparison of sounds attributed to pygmy blue whales (Balaenoptera musculus brevicauda) recorded south of the Madagascar Plateau and those attributed to 'true' blue whales (Balaenoptera musculus) recorded off Antarctica (Report). Vol. 48. International Whaling Commission. pp. 439–442.
  13. Sirovic, A.; Hildebrand, J. A.; Wiggins, S. M.; McDonald, M. A.; Moore, S. E.; Thiele, D. (2004). "Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula". Deep Sea Research Part II: Topical Studies in Oceanography . 51 (17–19): 2327–2344. Bibcode:2004DSRII..51.2327S. doi:10.1016/j.dsr2.2004.08.005.
  14. 1 2 Rankin, S.; Ljungblad, D.; Clark, C.; Kato, H. (2023). "Vocalisations of Antarctic blue whales, Balaenoptera musculus intermedia, recorded during the 2001/2002 and 2002/2003 IWC/SOWER circumpolar cruises, Area V, Antarctica". Journal of Cetacean Research and Management. 7: 13–20. doi: 10.47536/jcrm.v7i1.752 . S2CID   43993242.
  15. Sirovic, A.; Hildebrand, J. A.; Thiele, D. (2006). "Baleen whales in the Scotia Sea in January and February 2003". Journal of Cetacean Research and Management. 8: 161–171. doi: 10.47536/jcrm.v8i2.712 . S2CID   251277044.
  16. 1 2 Nieukirk, S. L.; Mellinger, D. K.; Hildebrand, J. A.; McDonald, M. A.; Dziak, R. P. (2005). Downward shift in the frequency of blue whale vocalizations. 16th Biennial Conference on the Biology of Marine Mammals. San Diego, CA. p. 205.
  17. 1 2 3 McDonald, M. A.; Hildebrand, J. A.; Mesnick, S. (2009). "Worldwide decline in tonal frequencies of blue whale songs". Endangered Species Research. 9: 13–21. doi: 10.3354/esr00217 .
  18. 1 2 Leroy, E. C.; Royer, J.-Y.; Bonnel, J.; Samaran, F. (2018). "Long-term and seasonal changes of large whale call frequency in the southern Indian Ocean". Journal of Geophysical Research: Oceans. 123 (11): 8568–8580. Bibcode:2018JGRC..123.8568L. doi: 10.1029/2018JC014352 . hdl: 1912/10837 . S2CID   135201588.
  19. Fox, David (2001). "Balaenoptera physalus (fin whale)". Animal Diversity Web. Retrieved 2006-10-22.
  20. "Finback Whale Vocalizations". Bioacoustics Research Program, Cornell Lab of Ornithology. Archived from the original on 2006-10-05. Retrieved 2006-10-26.
  21. "Bowhead Whale : Baleen Whales : Voices in the Sea". Archived from the original on 21 September 2013. Retrieved 3 April 2013.
  22. Finley, K.J. (2001). "Natural History and Conservation of the Greenland Whale, or Bowhead, in the Northeast Atlantic" (PDF). Arctic. 54 (1): 55–76. CiteSeerX   10.1.1.500.2600 . doi:10.14430/arctic764.
  23. "SAFS Seminar: Kate Stafford, Scientific serendipity—unveiling the acoustic behavior of bowhead whales". University of Washington . Retrieved January 14, 2024.
  24. Micu, Alexandru (2018-04-05). ""Bowhead [whales] are jazz," says researcher astonished by the diversity of their songs". ZME Science. Retrieved 2018-04-05.