Listeria Hfq binding LhrA | |
---|---|
Predicted secondary structure and sequence conservation of LhrA | |
Identifiers | |
Symbol | LhrA |
Rfam | RF00615 |
Other data | |
RNA type | Gene; sRNA |
Domain(s) | Bacteria |
GO | 0003729 |
SO | 0000655 |
PDB structures | PDBe |
Listeria Hfq binding LhrA is a ncRNA that was identified by screening for RNA molecules which co-immunoprecipitated with the RNA chaperone Hfq. [1] This RNA is transcribed from a region overlapping with a predicted protein of unknown function (Lmo2257) and is located between a putative intracellular protease and a putative protein of the ribulose-phosphate 3 epimerase family. It is highly expressed in the stationary growth phase but the function is unknown. It is proposed to be a regulatory RNA which controls gene expression at the post transcriptional level by binding the target mRNA in an Hfq dependent fashion. This RNA molecule appears to be conserved amongst Listeria species but has not been identified in other bacterial species.
Immunoprecipitation (IP) is the technique of precipitating a protein antigen out of solution using an antibody that specifically binds to that particular protein. This process can be used to isolate and concentrate a particular protein from a sample containing many thousands of different proteins. Immunoprecipitation requires that the antibody be coupled to a solid substrate at some point in the procedure.
The Hfq protein encoded by the hfq gene was discovered in 1968 as an Escherichia coli host factor that was essential for replication of the bacteriophage Qβ. It is now clear that Hfq is an abundant bacterial RNA binding protein which has many important physiological roles that are usually mediated by interacting with Hfq binding sRNA.
Proteins are large biomolecules, or macromolecules, consisting of one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells, and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific three-dimensional structure that determines its activity.
In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product. The result of this is that the genes contained in the operon are either expressed together or not at all. Several genes must be co-transcribed to define an operon.
Functional genomics is a field of molecular biology that attempts to describe gene functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects. Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. A key characteristic of functional genomics studies is their genome-wide approach to these questions, generally involving high-throughput methods rather than a more traditional “gene-by-gene” approach.
Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossman fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltrasferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the nucleophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases.
The gene rpoS encodes the sigma factor sigma-38, a 37.8 kD protein in Escherichia coli. Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. rpoS is transcribed in late exponential phase, and RpoS is the primary regulator of stationary phase genes. RpoS is a central regulator of the general stress response and operates in both a retroactive and a proactive manner: it not only allows the cell to survive environmental challenges, but it also prepares the cell for subsequent stresses (cross-protection). The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins, and the diguanylate cyclase, adrA, which indirectly activates cellulose production. The rpoS gene most likely originated in the gammaproteobacteria.
In molecular biology, LSm proteins are a family of RNA-binding proteins found in virtually every cellular organism. LSm is a contraction of 'like Sm', because the first identified members of the LSm protein family were the Sm proteins. LSm proteins are defined by a characteristic three-dimensional structure and their assembly into rings of six or seven individual LSm protein molecules, and play a large number of various roles in mRNA processing and regulation.
The gcvB RNA gene encodes a small non-coding RNA involved in the regulation of a number of amino acid transport systems as well as amino acid biosynthetic genes. The GcvB gene is found in enteric bacteria such as Escherichia coli. GcvB regulates genes by acting as an antisense binding partner of the mRNAs for each regulated gene. This binding is dependent on binding to a protein called Hfq. Transcription of the GcvB RNA is activated by the adjacent GcvA gene and repressed by the GcvR gene. A deletion of GcvB RNA from Y. pestis changed colony shape as well as reducing growth. It has been shown by gene deletion that GcvB is a regulator of acid resistance in E. coli. GcvB enhances the ability of the bacterium to survive low pH by upregulating the levels of the alternate sigma factor RpoS. A polymeric form of GcvB has recently been identified. Interaction of GcvB with small RNA SroC triggers the degradation of GcvB by RNase E, lifting the GcvB-mediated mRNA repression of its target genes.
RNA-OUT is a non-coding RNA that is antisense to the RNA-IN non-coding RNA. Transposition of insertion sequence IS10 is regulated by an anti-sense RNA which inhibits transposase expression when IS10 is present in multiple copies per cell. IS10 antisense pairing is facilitated by the RNA-binding protein, Hfq. RNA-OUT consists of a stem-loop domain topped by a flexibly paired loop; the 5' end of the target molecule, RNA-IN, is complementary to the top of the loop, and complementarity extends for 35 nucleotides down one side of RNA-OUT.
RydC is a bacterial non-coding RNA. RydC is thought to regulate a mRNA, yejABEF, which encodes an ABC transporter protein. RydC is known to bind the Hfq protein, which causes a conformational change in the RNA molecule. The Hfq/RydC complex is then thought to bind to the target mRNA and induce its degradation.
In molecular biology the ArcZ RNA is a small non-coding RNA (ncRNA). It is the functional product of a gene which is not translated into protein. ArcZ is an Hfq binding RNA that functions as an antisense regulator of a number of protein coding genes.
The sroB RNA is a non-coding RNA gene of 90 nucleotides in length. sroB is found in several Enterobacterial species but its function is unknown. SroB is found in the intergenic region on the opposite strand to the ybaK and ybaP genes. SroB is expressed in stationary phase. Experiments have shown that SroB is a Hfq binding sRNA.
The degradosome is a multiprotein complex present in most bacteria that is involved in the processing of ribosomal RNA and the degradation of messenger RNA and is regulated by Non-coding RNA. It contains the proteins RNA helicase B, RNase E and Polynucleotide phosphorylase.
Listeria LhrC ncRNA was identified by screening for RNA molecules which co-immunoprecipitated with the RNA chaperone Hfq. However, neither the stability nor the activity of LhrC seem to depend on the presence of Hfq. This RNA is transcribed from an intergenic region between the protein coding genes cysK, a putative cysteine synthase and sul, a putative dihydropteroate synthase. In Listeria monocytogenes four additional copies of lhrC have been identified in the genome, three of which are located in tandem repeat upstream of the originally characterised lhrC. This RNA molecule appears to be conserved amongst Listeria species but has not been identified in other bacterial species. It is involved in virulence. The direct mRNA targets of LhrC are the virulence adhesion LapB, and the oligo-peptide binding protein OppA. The 3 conserved UCCC motifs common to all copies of LhrC are involved in the mRNA binding and post-transcriptional repression of the target genes. Two other Listerina monocytogenes sRNAs Rli22 and Rli33 contain 2 UCCC motifs and use them to repress oppA mRNA expression.
The MAEB RNA motif is a conserved stem-loop RNA structure present in many species in the genus Burkholderia. MAEB stem-loops typically occur in blocks of repeats, usually with 2–6 consecutive instances of MAEB stem-loops separated by a short and conserved linker sequence. As many as 12 consecutive MAEB stem-loops have been observed in a single block.
An Hfq binding sRNA is an sRNA that binds the bacterial RNA binding protein called Hfq. A number of bacterial small RNAs which have been shown to bind to Hfq have been characterised . Many of these RNAs share a similar structure composed of three stem-loops. Several studies have expanded this list, and experimentally validated a total of 64 Hfq binding sRNA in Salmonella Typhimurium. A transcriptome wide study on Hfq binding sites in Salmonella mapped 126 Hfq binding sites within sRNAs. Genomic SELEX has been used to show that Hfq binding RNAs are enriched in the sequence motif 5′-AAYAAYAA-3′. Genome-wide study identified 40 candidate Hfq-dependent sRNAs in plant pathogen Erwinia amylovora. 12 of them were confirmed by Northern blot.
rpoS mRNA encodes for the rpoS stress factor, sigma S in Escherichia coli and related bacteria, where DsrA in conjunction with the Sm like RNA binding protein, Hfq promote the translation of this rpoS mRNA. The 5' UTR of the rpoS mRNA forms a self-inhibitory stem loop that shields the shine-dalgarno sequence and therefore inhibits translation. The secondary structure of the 5'UTR was predicted by acetylation of ribose 2'-hydroxyls with NMIA and by using a secondary structure prediction program, RNAstructure. DsrA stimulates rpoS translation by binding in the 5'UTR and causes the stem loop to open, exposing the ribosome binding site.
The c4 antisense RNA is a non-coding RNA used by certain phages that infect bacteria. It was initially identified in the P1 and P7 phages of E. coli. The identification of c4 antisense RNAs solved the mystery of the mechanism for regulation of the ant gene, which is an anti-repressor.
In molecular biology, the h2cR sRNA is a small RNA produced by species of the bacterial genus Burkholderia. It binds to the 5'UTR of mRNA encoding the hfq2 chaperone protein. Binding of this sRNA to the hfq2 mRNA results in accelerated decay of the mRNA.
Carbon storage regulator A (CsrA) is an RNA binding protein. The CsrA homologs are found in most bacterial species, in the pseudomonads they are called repressor of secondary metabolites. The CsrA proteins generally bind to the Shine-Dalgarno sequence of messenger RNAs and either inhibit translation or facilitate mRNA decay.
Bacterial small RNAs (sRNA) are an important class of regulatory molecules in bacteria such as Brucella. They are often bound to the chaperone protein Hfq, which allows them to interact with mRNA(s). In Brucella suis 1330 RNA sequencing identified a novel list of 33 sRNAs and 62 Hfq-associated mRNAs. In Brucella melitensis eight novel sRNA genes were identified using bioinformatic and experimental approach. One of them BSR0602 was found to modulate the intracellular survival of B. melitensis. In another large-scale deep sequencing study 1321 sRNAs were identified in B. melitensis. BSR0441 sRNA was further investigated in this study and shown to play role in the intracellular survival. sRNA BM-sr0117 from Brucella melitensis was identified and shown to be bound to and cleaved by Bm-RNase III. AbcR and AbcR2 were studied B. abortus. Seven novel sRNAs were validated and their interaction with a putative target sequence was verified in B. abortus.
This molecular or cell biology article is a stub. You can help Wikipedia by expanding it. |