In Galois cohomology, local Tate duality (or simply local duality) is a duality for Galois modules for the absolute Galois group of a non-archimedean local field. It is named after John Tate who first proved it. It shows that the dual of such a Galois module is the Tate twist of usual linear dual. This new dual is called the (local) Tate dual.
Local duality combined with Tate's local Euler characteristic formula provide a versatile set of tools for computing the Galois cohomology of local fields.
Let K be a non-archimedean local field, let Ks denote a separable closure of K, and let GK = Gal(Ks/K) be the absolute Galois group of K.
Denote by μ the Galois module of all roots of unity in Ks. Given a finite GK-module A of order prime to the characteristic of K, the Tate dual of A is defined as
(i.e. it is the Tate twist of the usual dual A∗). Let Hi(K, A) denote the group cohomology of GK with coefficients in A. The theorem states that the pairing
given by the cup product sets up a duality between Hi(K, A) and H2−i(K, A′) for i = 0, 1, 2. [1] Since GK has cohomological dimension equal to two, the higher cohomology groups vanish. [2]
Let p be a prime number. Let Qp(1) denote the p-adic cyclotomic character of GK (i.e. the Tate module of μ). A p-adic representation of GK is a continuous representation
where V is a finite-dimensional vector space over the p-adic numbers Qp and GL(V) denotes the group of invertible linear maps from V to itself. [3] The Tate dual of V is defined as
(i.e. it is the Tate twist of the usual dual V∗ = Hom(V, Qp)). In this case, Hi(K, V) denotes the continuous group cohomology of GK with coefficients in V. Local Tate duality applied to V says that the cup product induces a pairing
which is a duality between Hi(K, V) and H2−i(K, V ′) for i = 0, 1, 2. [4] Again, the higher cohomology groups vanish.
In mathematics, a field like K is called a local field if it is complete with respect to a topology induced by a discrete valuation like v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Given such a field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.
In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by Kenkichi Iwasawa (1959), as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently, Ralph Greenberg has proposed an Iwasawa theory for motives.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.
In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.
In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology.
In number theory, the Hasse norm theorem states that if L/K is a cyclic extension of number fields, then if a nonzero element of K is a local norm everywhere, then it is a global norm. Here to be a global norm means to be an element k of K such that there is an element l of L with ; in other words k is a relative norm of some element of the extension field L. To be a local norm means that for some prime p of K and some prime P of L lying over K, then k is a norm from LP; here the "prime" p can be an archimedean valuation, and the theorem is a statement about completions in all valuations, archimedean and non-archimedean.
In arithmetic geometry, the Selmer group, named in honor of the work of Ernst Sejersted Selmer (1951) by John William Scott Cassels (1962), is a group constructed from an isogeny of abelian varieties.
The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.
In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G.
In number theory and algebraic geometry, the Tate twist, named after John Tate, is an operation on Galois modules.
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.
In mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by Alexander Grothendieck and developed by Pierre Berthelot (1974).
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1).
In mathematics, p-adic Hodge theory is a theory that provides a way to classify and study p-adic Galois representations of characteristic 0 local fields with residual characteristic p. The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field.
In the mathematical field of Galois cohomology, the local Euler characteristic formula is a result due to John Tate that computes the Euler characteristic of the group cohomology of the absolute Galois group GK of a non-archimedean local field K.
In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor K-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of many seemingly unrelated theorems from abstract algebra, theory of quadratic forms, algebraic K-theory and the theory of motives. The theorem asserts that a certain statement holds true for any prime and any natural number . John Milnor speculated that this theorem might be true for and all , and this question became known as Milnor's conjecture. The general case was conjectured by Spencer Bloch and Kazuya Kato and became known as the Bloch–Kato conjecture or the motivic Bloch–Kato conjecture to distinguish it from the Bloch–Kato conjecture on values of L-functions. The norm residue isomorphism theorem was proved by Vladimir Voevodsky using a number of highly innovative results of Markus Rost.
In algebraic geometry, the Mumford–Tate groupMT(F) constructed from a Hodge structure F is a certain algebraic group G. When F is given by a rational representation of an algebraic torus, the definition of G is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. Mumford (1966) introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. Serre (1967) introduced the p-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of Tate (1967) on p-divisible groups, and named them Mumford–Tate groups.
In mathematics, Tate duality or Poitou–Tate duality is a duality theorem for Galois cohomology groups of modules over the Galois group of an algebraic number field or local field, introduced by John Tate (1962) and Georges Poitou (1967).