Loopback

Last updated

Loopback (also written loop-back) is the routing of electronic signals or digital data streams back to their source without intentional processing or modification. It is primarily a means of testing the communications infrastructure.

Contents

Loopback can take the form of communication channels with only one communication endpoint. Any message transmitted by such a channel is immediately and only received by that same channel. In telecommunications, loopback devices perform transmission tests of access lines from the serving switching center, which usually does not require the assistance of personnel at the served terminal. Loop around is a method of testing between stations that are not necessarily adjacent, wherein two lines are used, with the test being done at one station and the two lines are interconnected at the distant station. A patch cable may also function as loopback, when applied manually or automatically, remotely or locally, facilitating a loop-back test.

Where a system (such as a modem) involves round-trip analog-to-digital processing, a distinction is made between analog loopback, where the analog signal is looped back directly, and digital loopback, where the signal is processed in the digital domain before being re-converted to an analog signal and returned to the source.

Telecommunications

In telecommunications, loopback, or a loop, is a hardware or software method which feeds a received signal or data back to the sender. It is used as an aid in debugging physical connection problems. As a test, many data communication devices can be configured to send specific patterns (such as all ones) on an interface and can detect the reception of this signal on the same port. This is called a loopback test and can be performed within a modem or transceiver by connecting its output to its own input. A circuit between two points in different locations may be tested by applying a test signal on the circuit in one location, and having the network device at the other location send a signal back through the circuit. If this device receives its own signal back, this proves that the circuit is functioning.

A hardware loop is a simple device that physically connects the receiver channel to the transmitter channel. In the case of a network termination connector such as X.21, this is typically done by simply connecting the pins together in the connector. Media such as optical fiber or coaxial cable, which have separate transmit and receive connectors, can simply be looped together with a single strand of the appropriate medium.

A modem can be configured to loop incoming signals from either the remote modem or the local terminal. This is referred to as loopback or software loop.

Serial interfaces

A serial communications transceiver can use loopback for testing its functionality. For example, a device's transmit pin connected to its receive pin will result in the device receiving exactly what it transmits. Moving this looping connection to the remote end of a cable adds the cable to this test. Moving it to the far end of a modem link extends the test further. This is a common troubleshooting technique and is often combined with a specialized test device that sends specific patterns and counts any errors that come back (see Bit Error Rate Test ). Some devices include built-in loopback capability.

A simple serial interface loopback test, called paperclip test, is sometimes used to identify serial ports of a computer and verify operation. It utilizes a terminal emulator application to send characters, with flow control set to off, to the serial port and receive the same back. For this purpose, a paperclip is used to short pin 2 to pin 3 (the receive and transmit pins) on a standard RS-232 interface using D-subminiature DE-9 or DB-25 connectors.

Virtual loopback interface

Implementations of the Internet protocol suite include a virtual network interface through which network applications can communicate when executing on the same machine. It is implemented entirely within the operating system's networking software and passes no packets to any network interface controller. Any traffic that a computer program sends to a loopback IP address is simply and immediately passed back up the network software stack as if it had been received from another device. Unix-like systems usually name this loopback interface lo or lo0.

Various Internet Engineering Task Force (IETF) standards reserve the IPv4 address block 127.0.0.0/8, in CIDR notation and the IPv6 address ::1/128 for this purpose. The most common IPv4 address used is 127.0.0.1. Commonly these loopback addresses are mapped to the hostnames localhost or loopback.

MPLS

One notable exception to the use of the 127.0.0.0/8 network addresses is their use in Multiprotocol Label Switching (MPLS) traceroute error detection, in which their property of not being routable provides a convenient means to avoid delivery of faulty packets to end users.

Martian packets

Any IP datagram with a source or destination address set to a loopback address must not appear outside of a computing system, or be routed by any routing device. Packets received on an interface with a loopback destination address must be dropped. Such packets are sometimes referred to as Martian packets. [1] As with other bogus packets, they may be malicious and any problems they might cause can be avoided by applying bogon filtering.

Management interface

Some computer network equipment use the term "loopback" for a virtual interface used for management purposes. Unlike a proper loopback interface, this type of loopback device is not used to talk with itself.

Such an interface is assigned an address that can be accessed from management equipment over a network but is not assigned to any of the physical interfaces on the device. Such a loopback device is also used for management datagrams, such as alarms, originating from the equipment. The property that makes this virtual interface special is that applications that use it will send or receive traffic using the address assigned to the virtual interface as opposed to the address on the physical interface through which the traffic passes.

Loopback interfaces of this sort are often used in the operation of routing protocols, because they have the useful property that, unlike real physical interfaces, they will not go down when a physical port fails.

Other applications

The audio systems Open Sound System (OSS), Advanced Linux Sound Architecture (ALSA) and PulseAudio have loopback modules for recording the audio output of applications for testing purposes. Unlike physical loopbacks, this does not involve double analog/digital conversion and no disruption is caused by hardware malfunctions.

See also

Related Research Articles

<span class="mw-page-title-main">Point-to-Point Protocol</span> Data link layer communication protocol

In computer networking, Point-to-Point Protocol (PPP) is a data link layer communication protocol between two routers directly without any host or any other networking in between. It can provide loop detection, authentication, transmission encryption, and data compression.

<span class="mw-page-title-main">RS-232</span> Standard for serial communication

In telecommunications, RS-232 or Recommended Standard 232 is a standard originally introduced in 1960 for serial communication transmission of data. It formally defines signals connecting between a DTE such as a computer terminal or PC, and a DCE, such as a modem. The standard defines the electrical characteristics and timing of signals, the meaning of signals, and the physical size and pinout of connectors. The current version of the standard is TIA-232-F Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange, issued in 1997.

<span class="mw-page-title-main">Data circuit-terminating equipment</span> Communications system component

A data circuit-terminating equipment (DCE) is a device that sits between the data terminal equipment (DTE) and a data transmission circuit. It is also called data communication(s) equipment and data carrier equipment. Usually, the DTE device is the terminal, and the DCE is a modem.

<span class="mw-page-title-main">Network topology</span> Arrangement of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

<span class="mw-page-title-main">Data terminal equipment</span> Communications system equipment

Data terminal equipment (DTE) is an end instrument that converts user information into signals or reconverts received signals. It is also called data processing terminal equipment or tail circuit. A DTE device communicates with the data circuit-terminating equipment (DCE), such as a modem. The DTE/DCE classification was introduced by IBM.

<span class="mw-page-title-main">Serial port</span> Communication interface transmitting information sequentially

A serial port is a serial communication interface through which information transfers in or out sequentially one bit at a time. This is in contrast to a parallel port, which communicates multiple bits simultaneously in parallel. Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, various peripherals, and directly between computers.

In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to transmit on, the line code to use and similar low-level parameters, are specified by the physical layer.

GeoPort is a serial data system used on some models of the Apple Macintosh that could be externally clocked to run at a 2 megabit per second data rate. GeoPort slightly modified the existing Mac serial port pins to allow the computer's internal DSP hardware or software to send data that, when passed to a digital-to-analog converter, emulated various devices such as modems and fax machines. GeoPort could be found on late-model 68K-based machines as well as many pre-USB Power Macintosh models and PiPPiN. Some later Macintosh models also included an internal GeoPort via an internal connector on the Communications Slot. Apple GeoPort technology is now obsolete, and modem support is typically offered through USB.

<span class="mw-page-title-main">DMX512</span> Digital communication network standard for controlling stage lighting and effects

DMX512 is a standard for digital communication networks that are commonly used to control lighting and effects. It was originally intended as a standardized method for controlling stage lighting dimmers, which, prior to DMX512, had employed various incompatible proprietary protocols. It quickly became the primary method for linking controllers to dimmers and special effects devices such as fog machines and intelligent lights.

Serial Peripheral Interface (SPI) is a de facto standard for synchronous serial communication, used primarily in embedded systems for short-distance wired communication between integrated circuits.

In telecommunications, a point-to-point connection refers to a communications connection between two communication endpoints or nodes. An example is a telephone call, in which one telephone is connected with one other, and what is said by one caller can only be heard by the other. This is contrasted with a point-to-multipoint or broadcast connection, in which many nodes can receive information transmitted by one node. Other examples of point-to-point communications links are leased lines and microwave radio relay.

In computer networking, localhost is a hostname that refers to the current computer used to access it. The name localhost is reserved for loopback purposes. It is used to access the network services that are running on the host via the loopback network interface. Using the loopback interface bypasses any local network interface hardware.

<span class="mw-page-title-main">Null modem</span> Serial cable connecting two computers

Null modem is a communication method to directly connect two DTEs using an RS-232 serial cable. The name stems from the historical use of RS-232 cables to connect two teleprinter devices or two modems in order to communicate with one another; null modem communication refers to using a crossed-over RS-232 cable to connect the teleprinters directly to one another without the modems. It is also used to serially connect a computer to a printer, since both are DTE, and is known as a Printer Cable.

<span class="mw-page-title-main">IEEE 1284</span> Standard for parallel peripheral interfaces, known as the Centronics port

IEEE 1284, also known as the Centronics port, is a standard that defines bi-directional parallel communications between computers and other devices. It was originally developed in the 1970s by Centronics before its IEEE standardization.

<span class="mw-page-title-main">Terminal node controller</span>

A terminal node controller (TNC) is a device used by amateur radio operators to participate in AX.25 packet radio networks. It is similar in function to the Packet Assembler/Disassemblers used on X.25 networks, with the addition of a modem to convert baseband digital signals to audio tones.

<span class="mw-page-title-main">Medium Attachment Unit</span> Transceiver in an Ethernet network

A Medium Attachment Unit (MAU) is a transceiver which converts signals on an Ethernet cable to and from Attachment Unit Interface (AUI) signals.

<span class="mw-page-title-main">Adapter (computing)</span> Adapter used in computing

An adapter in regard to computing can be either a hardware component (device) or software that allows two or more incompatible devices to be linked together for the purpose of transmitting and receiving data. Given an input, an adapter alters it in order to provide a compatible connection between the components of a system. Both software and hardware adapters are used in many different devices such as mobile phones, personal computers, servers and telecommunications networks for a wide range of purposes. Some adapters are built into devices, while the others can be installed on a computer's motherboard or connected as external devices.

VLYNQ is a proprietary interface developed by Texas Instruments and used for broadband products, such as WLAN and modems, VOIP processors and audio and digital media processor chips. The chip implements a full-duplex serial communications interface that enables the extension of an internal bus segment to one or more external physical devices. The external devices are mapped into local, physical address space and appear as if they are on the internal bus. Multiple VLYNQ devices are daisy-chained, communication is peer-to-peer, host/peripheral. Data transferred over the VLYNQ interface is 8B/10B encoded and packetized.

<span class="mw-page-title-main">Modem</span> Device that modulates an analog carrier signal to encode digital information

A modulator-demodulator, commonly referred to as a modem, is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more carrier wave signals to encode digital information, while the receiver demodulates the signal to recreate the original digital information. The goal is to produce a signal that can be transmitted easily and decoded reliably. Modems can be used with almost any means of transmitting analog signals, from light-emitting diodes to radio.

Zenith Cable Modem was one of the first proprietary cable modems. The two basic models are one operating at 500 kilobits per second (Kbit/s), and the other at four megabits per second (Mbit/s) with BPSK and approximately a 25% alpha.

References

  1. Raymond, Eric S. "The Jargon File". Archived from the original on 2020-11-06. Retrieved 2004-06-23.