Low-power wide-area network

Last updated

A low-power, wide-area network (LPWAN or LPWA network) is a type of wireless telecommunication wide area network designed to allow long-range communication at a low bit rate between IoT devices, such as sensors operated on a battery.

Contents

Low power, low bit rate, and intended use distinguish this type of network from a wireless WAN that is designed to connect users or businesses, and carry more data, using more power. The LPWAN data rate ranges from 0.3 kbit/s to 50 kbit/s per channel.

A LPWAN may be used to create a private wireless sensor network, but may also be a service or infrastructure offered by a third party, allowing the owners of sensors to deploy them in the field without investing in gateway technology.

Attributes

  1. Range: The operating range of LPWAN technology varies from a few kilometers in urban areas to over 10 km in rural settings. It can also enable effective data communication in previously infeasible indoor and underground locations.
  2. Power: LPWAN manufacturers claim years to decades of usable life from built-in batteries, but real-world application tests have not confirmed this. [1]

Platforms and technologies

Some competing standards and vendors for LPWAN space include: [2]

Ultra-narrow band

Ultra Narrowband (UNB), modulation technology used for LPWAN by various companies including:

Others

See also

Related Research Articles

<span class="mw-page-title-main">WiMAX</span> Wireless broadband standard

Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.

4G is the fourth generation of broadband cellular network technology, succeeding 3G and preceding 5G. A 4G system must provide capabilities defined by ITU in IMT Advanced. Potential and current applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, and 3D television.

Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind.

<span class="mw-page-title-main">Orthogonal frequency-division multiple access</span> Multi-user version of OFDM digital modulation

Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.

A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics of which some are described in this entry.

<span class="mw-page-title-main">Mobile broadband</span> Marketing term

Mobile broadband is the marketing term for wireless Internet access via mobile networks. Access to the network can be made through a portable modem, wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

<span class="mw-page-title-main">LTE Advanced</span> Mobile communication standard

LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.

International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.

DASH7 Alliance Protocol (D7A) is an open-source wireless sensor and actuator network protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-year battery life, range of up to 2 km, low latency for connecting with moving things, a very small open-source protocol stack, AES 128-bit shared-key encryption support, and data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium called the DASH7 Alliance.

<span class="mw-page-title-main">XBee</span> Motherboard

Digi XBee is the brand name of a popular family of form factor compatible wireless connectivity modules from Digi International. The first XBee modules were introduced under the MaxStream brand in 2005 and were based on the IEEE 802.15.4-2003 standard designed for point-to-point and star communications. Since the initial introduction, the XBee family has grown and a complete ecosystem of wireless modules, gateways, adapters and software has evolved.

Weightless was a set of low-power wide-area network (LPWAN) wireless technology specifications for exchanging data between a base station and many of machines around it.

IEEE 802.11ah is a wireless networking protocol published in 2017 called Wi-Fi HaLow as an amendment of the IEEE 802.11-2007 wireless networking standard. It uses 900 MHz license-exempt bands to provide extended-range Wi-Fi networks, compared to conventional Wi-Fi networks operating in the 2.4 GHz, 5 GHz and 6 GHz bands. It also benefits from lower energy consumption, allowing the creation of large groups of stations or sensors that cooperate to share signals, supporting the concept of the Internet of things (IoT). The protocol's low power consumption competes with Bluetooth, LoRa, and Zigbee, and has the added benefit of higher data rates and wider coverage range.

<span class="mw-page-title-main">Sigfox</span>

Sigfox is a French global network operator founded in 2010 that built wireless networks to connect low-power objects such as electricity meters and smartwatches, which need to be continuously on and emitting small amounts of data.

Narrowband Internet of things (NB-IoT) is a low-power wide-area network (LPWAN) radio technology standard developed by 3GPP for cellular network devices and services. The specification was frozen in 3GPP Release 13, in June 2016. Other 3GPP IoT technologies include eMTC and EC-GSM-IoT.

<span class="mw-page-title-main">Vehicle-to-everything</span> Communication between a vehicle and any entity that may affect the vehicle

Vehicle-to-everything (V2X) is communication between a vehicle and any entity that may affect, or may be affected by, the vehicle. It is a vehicular communication system that incorporates other more specific types of communication as V2I (vehicle-to-infrastructure), V2N (vehicle-to-network), V2V (vehicle-to-vehicle), V2P (vehicle-to-pedestrian), V2D (vehicle-to-device).

<span class="mw-page-title-main">LoRa</span> Wireless communication technology

LoRa is a physical proprietary radio communication technique. It is based on spread spectrum modulation techniques derived from chirp spread spectrum (CSS) technology. It was developed by Cycleo, a company of Grenoble, France, and patented in 2014. Cycleo was later acquired by Semtech.

LTE-M or LTE-MTC, is a type of low-power wide-area network radio communication technology standard developed by 3GPP for machine-to-machine and Internet of Things (IoT) applications. LTE-M includes eMTC, also known as LTE Cat-M1, whose specification was frozen in 3GPP Release 13, in June 2016.

Static Context Header Compression(SCHC) is a standard compression and fragmentation mechanism defined in the IPv6 over LPWAN working group at the IETF. It offers compression and fragmentation of IPv6/UDP/CoAP packets to allow their transmission over the Low-Power Wide-Area Networks (LPWAN).

Connected Baltics is an Estonian telecommunications company founded in 2016. It is the exclusive operator of the Sigfox network in Estonia, a low-power wide-area network (LPWAN) technology for the Internet of Things (IoT). LPWANs enable communication between devices over a large geographical area with low power consumption, making them ideal for applications requiring long battery life and minimal data transmission.

References

  1. Singh, Ritesh Kumar; Puluckul, Priyesh Pappinisseri; Berkvens, Rafael; Weyn, Maarten (2020-08-25). "Energy Consumption Analysis of LPWAN Technologies and Lifetime Estimation for IoT Application". Sensors (Basel, Switzerland). 20 (17): 4794. Bibcode:2020Senso..20.4794S. doi: 10.3390/s20174794 . ISSN   1424-8220. PMC   7506725 . PMID   32854350.
  2. Sanchez-Iborra, Ramon; Cano, Maria-Dolores (2016). "State of the Art in LP-WAN Solutions for Industrial IoT Services". Sensors. 16 (5): 708. Bibcode:2016Senso..16..708S. doi: 10.3390/s16050708 . PMC   4883399 . PMID   27196909.
  3. Sheldon, John (2019-06-25). "French IoT Satellite Company Kinéis Announces Strategic Partnerships With Objenious And Wize Alliance". SpaceWatch.Global. Retrieved 2019-08-02.
  4. "SIGFOX Technology" . Retrieved 2016-02-01.
  5. "What is LoRaWAN?". Link Labs. Retrieved 2023-01-09.
  6. Jesus Sanchez-Gomez; Ramon Sanchez-Iborra (2017). "Experimental comparison of LoRa and FSK as IoT-communication-enabling modulations". IEEE Global Communications Conference (Globecom'17). doi:10.1109/GLOCOM.2017.8254530. S2CID   44010035.
  7. "ELTRES Technology". Sony Semiconductor Solutions Group. Retrieved 2022-08-10.
  8. IEEE Standard for Information technology--Telecommunications and information exchange between systems - Local and metropolitan area networks--Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHZ License Exempt Operation. doi:10.1109/IEEESTD.2017.7920364. ISBN   978-1-5044-3911-4.
  9. "SIGFOX Technology" . Retrieved 2016-02-01.
  10. "Weightless-N – Weightless". www.weightless.org. Retrieved 2016-02-01.
  11. "What is NB-Fi Protocol – WAVIoT LPWAN". WAVIoT LPWAN. Retrieved 2018-05-18.
  12. "Framework Details". haystacktechnologies.com. Retrieved 2016-02-01.
  13. Flynn, Kevin. "Evolution of LTE in Release 13". www.3gpp.org. Retrieved 2016-02-01.
  14. "LTE-M, NB-LTE-M, & NB-IOT: Three 3GPP IoT Technologies To Get Familiar With". Link Labs. Retrieved 2016-02-01.
  15. Freeman, Mike (2015-09-08). "On-Ramp Wireless becomes Ingenu, launches nationwide IoT network". The San Diego Union-Tribune. Retrieved 2015-09-14.
  16. "Ingenu Launches the US's Newest IoT Network". Light Reading. Retrieved 2015-09-14.
  17. St. John, Jeff (2013-02-01). "GE Dives Into AMI Fray With On-Ramp Wireless: Greentech Media" . Retrieved 2015-09-14.
  18. Guiterrez, Peter (October 13, 2016). "How Taggle is spreading LPWAN across Australia". IoT HUB. Retrieved September 23, 2021.
  19. "Wi-SUN Alliance". Wi-SUN Alliance. 2018-08-15. Retrieved 2019-12-16.