In mathematics, a Luzin space (or Lusin space), named for N. N. Luzin, is an uncountable topological T1 space without isolated points in which every nowhere-dense subset is countable. There are many minor variations of this definition in use: the T1 condition can be replaced by T2 or T3, and some authors allow a countable or even arbitrary number of isolated points.
The existence of a Luzin space is independent of the axioms of ZFC. Lusin (1914) showed that the continuum hypothesis implies that a Luzin space exists. Kunen (1977) showed that assuming Martin's axiom and the negation of the continuum hypothesis, there are no Hausdorff Luzin spaces.
In real analysis and descriptive set theory, a Luzin set (or Lusin set), is defined as an uncountable subset A of the reals such that every uncountable subset of A is nonmeager; that is, of second Baire category. Equivalently, A is an uncountable set of reals that meets every first category set in only countably many points. Luzin proved that, if the continuum hypothesis holds, then every nonmeager set has a Luzin subset. Obvious properties of a Luzin set are that it must be nonmeager (otherwise the set itself is an uncountable meager subset) and of measure zero, because every set of positive measure contains a meager set that also has positive measure, and is therefore uncountable. A weakly Luzin set is an uncountable subset of a real vector space such that for any uncountable subset the set of directions between different elements of the subset is dense in the sphere of directions.
The measure-category duality provides a measure analogue of Luzin sets – sets of positive outer measure, every uncountable subset of which has positive outer measure. These sets are called Sierpiński sets, after Wacław Sierpiński. Sierpiński sets are weakly Luzin sets but are not Luzin sets.
Choose a collection of 2ℵ0 meager subsets of R such that every meager subset is contained in one of them. By the continuum hypothesis, it is possible to enumerate them as Sα for countable ordinals α. For each countable ordinal β choose a real number xβ that is not in any of the sets Sα for α<β, which is possible as the union of these sets is meager so is not the whole of R. Then the uncountable set X of all these real numbers xβ has only a countable number of elements in each set Sα, so is a Luzin set.
More complicated variations of this construction produce examples of Luzin sets that are subgroups, subfields or real-closed subfields of the real numbers.
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.
In mathematics, a well-order on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.
In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.
In the mathematical field of general topology, a meagre set is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is called nonmeagre, or of the second category. See below for definitions of other related terms.
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.
In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers, but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by .
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.
Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.
In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, , behave roughly like . The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments.
A subset of a topological space has the property of Baire, or is called an almost open set, if it differs from an open set by a meager set; that is, if there is an open set such that is meager.
In mathematics, more specifically in measure theory, the Baire sets form a σ-algebra of a topological space that avoids some of the pathological properties of Borel sets.
In mathematics, a Lusin space or Luzin space, named for N. N. Luzin, may mean:
In mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum of all countable ordinals. When considered as a set, the elements of are the countable ordinals, of which there are uncountably many.
The open coloring axiom is an axiom about coloring edges of a graph whose vertices are a subset of the real numbers: two different versions were introduced by Abraham, Rubin & Shelah (1985) and by Todorčević (1989).
This is a glossary of set theory.
In mathematics, a Sierpiński set is an uncountable subset of a real vector space whose intersection with every measure-zero set is countable. The existence of Sierpiński sets is independent of the axioms of ZFC. Sierpiński (1924) showed that they exist if the continuum hypothesis is true. On the other hand, they do not exist if Martin's axiom for ℵ1 is true. Sierpiński sets are weakly Luzin sets but are not Luzin sets.
In mathematical analysis, a strong measure zero set is a subset A of the real line with the following property: