M22 graph

Last updated
M22 graph, Mesner graph [1] [2] [3]
M22 graph.svg
Named after Mathieu group M22, Dale M. Mesner
Vertices 77
Edges 616
Table of graphs and parameters

The M22 graph, also called the Mesner graph [1] [2] [3] or Witt graph [4] is the unique strongly regular graph with parameters (77, 16, 0, 4). [5] It is constructed from the Steiner system (3, 6, 22) by representing its 77 blocks as vertices and joining two vertices iff they have no terms in common or by deleting a vertex and its neighbors from the Higman–Sims graph. [6] [7]

Contents

For any term, the family of blocks that contain that term forms an independent set in this graph, with 21 vertices. In a result analogous to the Erdős–Ko–Rado theorem (which can be formulated in terms of independent sets in Kneser graphs), these are the unique maximum independent sets in this graph. [4]

It is one of seven known triangle-free strongly regular graphs. [8] Its graph spectrum is (−6)21255161, [6] and its automorphism group is the Mathieu group M22. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Erdős–Ko–Rado theorem</span> Upper bound on intersecting set families

In mathematics, the Erdős–Ko–Rado theorem limits the number of sets in a family of sets for which every two sets have at least one element in common. Paul Erdős, Chao Ko, and Richard Rado proved the theorem in 1938, but did not publish it until 1961. It is part of the field of combinatorics, and one of the central results of extremal set theory.

<span class="mw-page-title-main">Higman–Sims group</span>

In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order

In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

<span class="mw-page-title-main">Higman–Sims graph</span>

In mathematical graph theory, the Higman–Sims graph is a 22-regular undirected graph with 100 vertices and 1100 edges. It is the unique strongly regular graph srg(100,22,0,6), where no neighboring pair of vertices share a common neighbor and each non-neighboring pair of vertices share six common neighbors. It was first constructed by Mesner (1956) and rediscovered in 1968 by Donald G. Higman and Charles C. Sims as a way to define the Higman–Sims group, a subgroup of index two in the group of automorphisms of the Hoffman–Singleton graph.

<span class="mw-page-title-main">Strongly regular graph</span> Concept in graph theory

In graph theory, a strongly regular graph (SRG) is a regular graph G = (V, E) with v vertices and degree k such that for some given integers

<span class="mw-page-title-main">Kneser graph</span> Graph whose vertices correspond to combinations of a set of n elements

In graph theory, the Kneser graphK(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956.

In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.

<span class="mw-page-title-main">Rook's graph</span> Graph of chess rook moves

In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape. Although rook's graphs have only minor significance in chess lore, they are more important in the abstract mathematics of graphs through their alternative constructions: rook's graphs are the Cartesian product of two complete graphs, and are the line graphs of complete bipartite graphs. The square rook's graphs constitute the two-dimensional Hamming graphs.

<span class="mw-page-title-main">Grötzsch graph</span> Triangle-free graph requiring four colors

In the mathematical field of graph theory, the Grötzsch graph is a triangle-free graph with 11 vertices, 20 edges, chromatic number 4, and crossing number 5. It is named after German mathematician Herbert Grötzsch, who used it as an example in connection with his 1959 theorem that planar triangle-free graphs are 3-colorable.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann. The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

<span class="mw-page-title-main">Václav Chvátal</span> Czech-Canadian mathematician

Václav (Vašek) Chvátal is a Professor Emeritus in the Department of Computer Science and Software Engineering at Concordia University in Montreal, Quebec, Canada, and a visiting professor at Charles University in Prague. He has published extensively on topics in graph theory, combinatorics, and combinatorial optimization.

<span class="mw-page-title-main">Shrikhande graph</span> Undirected graph named after S. S. Shrikhande

In the mathematical field of graph theory, the Shrikhande graph is a graph discovered by S. S. Shrikhande in 1959. It is a strongly regular graph with 16 vertices and 48 edges, with each vertex having degree 6. Every pair of nodes has exactly two other neighbors in common, whether or not the pair of nodes is connected.

<span class="mw-page-title-main">Asymmetric graph</span> Undirected graph with no non-trivial symmetries

In graph theory, a branch of mathematics, an undirected graph is called an asymmetric graph if it has no nontrivial symmetries.

<span class="mw-page-title-main">Odd graph</span> Family of symmetric graphs which generalize the Petersen graph

In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph.

Heiko Harborth is Professor of Mathematics at Braunschweig University of Technology, 1975–present, and author of more than 188 mathematical publications. His work is mostly in the areas of number theory, combinatorics and discrete geometry, including graph theory.

<span class="mw-page-title-main">Clebsch graph</span> One of two different regular graphs with 16 vertices

In the mathematical field of graph theory, the Clebsch graph is either of two complementary graphs on 16 vertices, a 5-regular graph with 40 edges and a 10-regular graph with 80 edges. The 80-edge graph is the dimension-5 halved cube graph; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician Alfred Clebsch. The 40-edge variant is the dimension-5 folded cube graph; it is also known as the Greenwood–Gleason graph after the work of Robert E. Greenwood and Andrew M. Gleason, who used it to evaluate the Ramsey number R(3,3,3) = 17.

<span class="mw-page-title-main">Schläfli graph</span>

In the mathematical field of graph theory, the Schläfli graph, named after Ludwig Schläfli, is a 16-regular undirected graph with 27 vertices and 216 edges. It is a strongly regular graph with parameters srg(27, 16, 10, 8).

<span class="mw-page-title-main">Chang graphs</span>

In the mathematical field of graph theory, the Chang graphs are three 12-regular undirected graphs, each with 28 vertices and 168 edges. They are strongly regular, with the same parameters and spectrum as the line graph L(K8) of the complete graph K8.

<span class="mw-page-title-main">Universal vertex</span> Vertex adjacent to all others in a graph

In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph.

References

  1. 1 2 "Mesner graph with parameters (77,16,0,4). The automorphism group is of order 887040 and is isomorphic to the stabilizer of a point in the automorphism group of NL2(10)"
  2. 1 2 Slide 5 list of triangle-free SRGs says "Mesner graph"
  3. 1 2 Section 3.2.6 Mesner graph
  4. 1 2 Godsil, Christopher; Meagher, Karen (2015), "Section 5.4: The Witt graph", Erdős–Ko–Rado Theorems: Algebraic Approaches, Cambridge Studies in Advanced Mathematics, Cambridge University Press, pp. 94–96, ISBN   9781107128446
  5. 1 2 Brouwer, Andries E. “M22 Graph.” Technische Universiteit Eindhoven, http://www.win.tue.nl/~aeb/graphs/M22.html. Accessed 29 May 2018.
  6. 1 2 Weisstein, Eric W. “M22 Graph.” MathWorld, http://mathworld.wolfram.com/M22Graph.html. Accessed 29 May 2018.
  7. Vis, Timothy. “The Higman–Sims Graph.” University of Colorado Denver, http://math.ucdenver.edu/~wcherowi/courses/m6023/tim.pdf. Accessed 29 May 2018.
  8. Weisstein, Eric W. “Strongly Regular Graph.” From Wolfram MathWorld, mathworld.wolfram.com/StronglyRegularGraph.html.