METTL3

Last updated
METTL3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases METTL3 , IME4, M6A, MT-A70, Spo8, methyltransferase like 3, hmethyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit
External IDs OMIM: 612472; MGI: 1927165; HomoloGene: 10501; GeneCards: METTL3; OMA:METTL3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_019852

NM_019721

RefSeq (protein)

NP_062826

NP_062695

Location (UCSC) Chr 14: 21.5 – 21.51 Mb Chr 14: 52.53 – 52.54 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

N6-adenosine-methyltransferase 70 kDa subunit (METTL3) is an enzyme that in humans is encoded by the METTL3 gene. [5] METTL3 is located on the human chromosome 14q11.2 (Cancer Biology) and out of the METTL protein family, it is the most studied. [6]

Contents

This gene encodes the 70 kDa subunit of MT-A which is part of N6-adenosine-methyltransferase. This enzyme is involved in the post-transcriptional methylation of internal adenosine residues in eukaryotic mRNAs, forming N6-methyladenosine (m6A). [5] METTL3 forms the m6 a methyltransferase complex with METTL14 and WTP and is responsible for a majority of the m6a modifications of mRNA. [6] The most common modification being the catalyzation of m6a with the methyltransferase complex. [7] METTL3 is expressed in a variety of normal tissues, such as the lymphoid, testis, prostate and fallopian tube tissues. The enzyme is also responsible for mechanisms related to tumor development, RNA stability and maturation, and has suggested roles in ensuring animal survival. [6]

Function

The m6A methyltransferase complex

In the m6a methyltransferase complex (MTC), METTL3 is a part of the m6A “writers” and is a core catalytic component. [8] METTL3 interacts with S-adenosylmethionine (SAM), a methyl donor to catalyze the formation of the MTC complex via methyl transfer. [7] METTL3 forms the heterodimer complex with METTL3, binds to SAM and interacts with substrate RNA to transfer methyl groups to target RNA. The complex can also bind to target RNA using WTAP. After a METTL3-METTL14-WTAP complex forms, METTL3 can bind to RBM15. Then, MTC can be recruited at specific sites in the RNA. [8]

In cancer

METTL3 acts as an m6a methyltransferase in cancer, mostly as an oncogene, and sometimes a tumor suppressor. In most examples, METTL3 promotes the initiation and development of cancers such as lung, liver, gastric, prostate and breast cancer. METTL3 does so through applying m6a modifications on crucial mediators and transcripts. An example of this is METTL3 expression in pancreatic cancer. In pancreatic cancer, METTL3 expression applies m6a modifications onto the oncogene primary miR-25, provoking malignant transformation via enhanced maturation of the miRNA. [9]

In a few cases, METTL3 acts as a tumor suppressor. The m6a mRNA modifications from METTL3 can promote tumor suppressor proliferation, migration, and invasion. In colorectal cancer, METTL3 promotes the tumor suppressor through p38/ERK pathways. [9]

Related Research Articles

<span class="mw-page-title-main">DNA methyltransferase</span> Class of enzymes

In biochemistry, the DNA methyltransferase family of enzymes catalyze the transfer of a methyl group to DNA. DNA methylation serves a wide variety of biological functions. All the known DNA methyltransferases use S-adenosyl methionine (SAM) as the methyl donor.

<span class="mw-page-title-main">RNA editing</span> Molecular process

RNA editing is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after it has been generated by RNA polymerase. It occurs in all living organisms and is one of the most evolutionarily conserved properties of RNAs. RNA editing may include the insertion, deletion, and base substitution of nucleotides within the RNA molecule. RNA editing is relatively rare, with common forms of RNA processing not usually considered as editing. It can affect the activity, localization as well as stability of RNAs, and has been linked with human diseases.

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrease transcription of genes, depending on which amino acids in the histones are methylated, and how many methyl groups are attached. Methylation events that weaken chemical attractions between histone tails and DNA increase transcription because they enable the DNA to uncoil from nucleosomes so that transcription factor proteins and RNA polymerase can access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different genes.

<span class="mw-page-title-main">Methyltransferase</span> Group of methylating enzymes

Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossmann fold for binding S-Adenosyl methionine (SAM). Class II methyltransferases contain a SET domain, which are exemplified by SET domain histone methyltransferases, and class III methyltransferases, which are membrane associated. Methyltransferases can also be grouped as different types utilizing different substrates in methyl transfer reactions. These types include protein methyltransferases, DNA/RNA methyltransferases, natural product methyltransferases, and non-SAM dependent methyltransferases. SAM is the classical methyl donor for methyltransferases, however, examples of other methyl donors are seen in nature. The general mechanism for methyl transfer is a SN2-like nucleophilic attack where the methionine sulfur serves as the leaving group and the methyl group attached to it acts as the electrophile that transfers the methyl group to the enzyme substrate. SAM is converted to S-Adenosyl homocysteine (SAH) during this process. The breaking of the SAM-methyl bond and the formation of the substrate-methyl bond happen nearly simultaneously. These enzymatic reactions are found in many pathways and are implicated in genetic diseases, cancer, and metabolic diseases. Another type of methyl transfer is the radical S-Adenosyl methionine (SAM) which is the methylation of unactivated carbon atoms in primary metabolites, proteins, lipids, and RNA.

AlkB (Alkylation B) is a protein found in E. coli, induced during an adaptive response and involved in the direct reversal of alkylation damage. AlkB specifically removes alkylation damage to single stranded (SS) DNA caused by SN2 type of chemical agents. It efficiently removes methyl groups from 1-methyl adenines, 3-methyl cytosines in SS DNA. AlkB is an alpha-ketoglutarate-dependent hydroxylase, a superfamily non-haem iron-containing proteins. It oxidatively demethylates the DNA substrate. Demethylation by AlkB is accompanied with release of CO2, succinate, and formaldehyde.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">ELOC</span> Protein-coding gene in the species Homo sapiens

Elongin C is a protein that in humans is encoded by the ELOC gene.

<span class="mw-page-title-main">ELAV-like protein 1</span> Protein found in humans

ELAV-like protein 1 or HuR is a protein that in humans is encoded by the ELAVL1 gene.

<span class="mw-page-title-main">NT5E</span> Enzyme converting AMP to adenosine

5′-nucleotidase (5′-NT), also known as ecto-5′-nucleotidase or CD73, is an enzyme that in humans is encoded by the NT5E gene. CD73 commonly serves to convert AMP to adenosine.

<span class="mw-page-title-main">MTAP</span> Protein-coding gene in the species Homo sapiens

S-methyl-5'-thioadenosine phosphorylase (MTAP) is an enzyme responsible for polyamine metabolism. In humans, it is encoded by the methylthioadenosine phosphorylase (MTAP) gene on chromosome 9. Multiple alternatively spliced transcript variants have been described for this gene, but their full-length natures remain unknown.

<span class="mw-page-title-main">WTAP (gene)</span> Protein that in humans is encoded by the WTAP gene

Pre-mRNA-splicing regulator WTAP is a protein that in humans is encoded by the WTAP gene.

DNA adenine methyltransferase identification, often abbreviated DamID, is a molecular biology protocol used to map the binding sites of DNA- and chromatin-binding proteins in eukaryotes. DamID identifies binding sites by expressing the proposed DNA-binding protein as a fusion protein with DNA methyltransferase. Binding of the protein of interest to DNA localizes the methyltransferase in the region of the binding site. Adenine methylation does not occur naturally in eukaryotes and therefore adenine methylation in any region can be concluded to have been caused by the fusion protein, implying the region is located near a binding site. DamID is an alternate method to ChIP-on-chip or ChIP-seq.

<i>N</i><sup>6</sup>-Methyladenosine Modification in mRNA, DNA

N6-Methyladenosine (m6A) was originally identified and partially characterised in the 1970s, and is an abundant modification in mRNA and DNA. It is found within some viruses, and most eukaryotes including mammals, insects, plants and yeast. It is also found in tRNA, rRNA, and small nuclear RNA (snRNA) as well as several long non-coding RNA, such as Xist.

Within the field of molecular biology, the epitranscriptome includes all the biochemical modifications of the RNA within a cell. In analogy to epigenetics that describes "functionally relevant changes to the genome that do not involve a change in the nucleotide sequence", epitranscriptomics involves all functionally relevant changes to the transcriptome that do not involve a change in the ribonucleotide sequence. Thus, the epitranscriptome can be defined as the ensemble of such functionally relevant changes.

<span class="mw-page-title-main">Chuan He</span> Chinese-American chemical biologist

Chuan He is a Chinese-American chemical biologist. He currently serves as the John T. Wilson Distinguished Service Professor at the University of Chicago, and an Investigator of the Howard Hughes Medical Institute. He is best known for his work in discovering and deciphering reversible RNA methylation in post-transcriptional gene expression regulation. He was awarded the 2023 Wolf Prize in Chemistry for his work in discovering and deciphering reversible RNA methylation in post-transcriptional gene expression regulation in addition to his contributions to the invention of TAB-seq, a biochemical method that can map 5-hydroxymethylcytosine (5hmC) at base-resolution genome-wide, as well as hmC-Seal, a method that covalently labels 5hmC for its detection and profiling.

<span class="mw-page-title-main">Epitranscriptomic sequencing</span>

In epitranscriptomic sequencing, most methods focus on either (1) enrichment and purification of the modified RNA molecules before running on the RNA sequencer, or (2) improving or modifying bioinformatics analysis pipelines to call the modification peaks. Most methods have been adapted and optimized for mRNA molecules, except for modified bisulfite sequencing for profiling 5-methylcytidine which was optimized for tRNAs and rRNAs.

<span class="mw-page-title-main">METTL16</span> Protein-coding gene in the species Homo sapiens

RNA N6-adenosine-methyltransferase METTL16 is a protein that in humans is encoded by the METTL16 gene.

Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.

The viral epitranscriptome includes all modifications to viral transcripts, studied by viral epitranscriptomics. Like the more general epitranscriptome, these modifications do not affect the sequence of the transcript, but rather have consequences on subsequent structures and functions.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000165819 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022160 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: METTL3 methyltransferase like 3".
  6. 1 2 3 Qi YN, Liu Z, Hong LL, Li P, Ling ZQ (August 2023). "Methyltransferase-like proteins in cancer biology and potential therapeutic targeting". Journal of Hematology & Oncology. 16 (1): 89. doi: 10.1186/s13045-023-01477-7 . PMC   10394802 . PMID   37533128.
  7. 1 2 Xu P, Ge R (February 2022). "Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy". European Journal of Medicinal Chemistry. 230: 114118. doi:10.1016/j.ejmech.2022.114118. PMID   35063732.
  8. 1 2 Jin Q, Qu H, Quan C (November 2023). "New insights into the regulation of METTL3 and its role in tumors". Cell Communication and Signaling. 21 (1): 334. doi: 10.1186/s12964-023-01360-5 . PMC   10732098 . PMID   37996892.
  9. 1 2 Zeng C, Huang W, Li Y, Weng H (August 2020). "Roles of METTL3 in cancer: mechanisms and therapeutic targeting". Journal of Hematology & Oncology. 13 (1): 117. doi: 10.1186/s13045-020-00951-w . PMC   7457244 . PMID   32854717.

Further reading