MORT (long non-coding RNA)

Last updated
ZNF667-AS1
Identifiers
Aliases ZNF667-AS1 , MORT, ZNF667 antisense RNA 1 (head to head)
External IDs GeneCards: ZNF667-AS1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_198879

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC) Chr 19: 56.48 – 56.5 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

MORT (Mortal Obligate RNA Transcript (also known as ZNF667-AS1)) is a long non-coding RNA (lncRNA) of the intergenic type (lincRNA) that is specific to humans and great apes. [3] The MORT transcript is produced in all mortal cell types, but is lost in a large fraction of the most common human cancers and therefore might have a tumor suppressive function.

Contents

Genomic location

The MORT gene is located on human chromosome 19, at position 56,989,000–57,007,000 (hg19) within a cluster of zinc finger genes (ZNF genes). The MORT gene consists of 2 exons, 260 and 1270 bp, respectively, that are separated by a 16 kbp intron. A large portion of the second MORT exon is formed by repetitive elements – two LINEs and an LTR element. [3] The MORT promoter is located in a CpG island that is shared with the ZNF667 gene; the two genes reside in a head to head orientation with one another. Despite the MORT gene's location inside a cluster of ZNF genes, the MORT gene is not homologous to any ZNF genes. While the MORT gene is in a head to head orientation with ZNF667, MORT does not overlap the ZNF667 gene, nor does it share any antisense homology to ZNF667, so the officially used symbol ZNF667-AS1 is somewhat misleading.

Evolution

MORT has orthologs only in great apeschimpanzees, gorillas and orangutans, and the RNA expression data indicates that the MORT transcript is expressed in these species. [3] Thus, from a phylogenetic point view, MORT is likely a young lincRNA gene that emerged during evolution of great apes. It is possible that the long life span of the great apes required evolution of additional genes with tumor suppressive activity, and that MORT is such an example.

Silencing in cancer

MORT is expressed in all 16 normal human tissues reported in the Illumina body map data, [4] as well as all in vitro cultured, finite lifespan, human cell strains that have been analyzed. In contrast, MORT gene expression is lost in a large percentage of human cancers and human cancer cell lines. Using data from human cancers curated in TCGA, MORT RNA expression and DNA methylation state were evaluated in the 10 most common male cancers and the 10 most common female cancers [5] (totalling 17 different cancer types based on TCGA classification). Analysis shows that the MORT gene expression is silenced by DNA hypermethylation of its CpG island promoter in a majority of human tumor samples in 15 of these 17 human cancers. [3]

The 15 tumor types where MORT is frequently silenced are acute myeloid leukemia, bladder urothelial carcinoma, breast invasive carcinoma, colon adenocarcinoma, head and neck squamous-cell carcinoma, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, lymphoid neoplasm diffuse large B-cell lymphoma, pancreatic adenocarcinoma, rectum adenocarcinoma, skin cutaneous melanoma, and Uterine Corpus Endometrial Carcinoma. [3] MORT is silenced in cervical cancer and therefore may serve as an independent prognostic factor with low MORT expression be associated with a decreased overall survival. [6]

Since cell immortality is an obligate feature of the cancer cell and MORT was discovered as a target of epigenetic silencing at the boundary where finite lifespan human cells transition from mortal to immortal, MORT’s epigenetic inactivation may create a cellular state permissive to cell immortalization and suggests a possible tumor suppressive mechanism of MORT’s action. If this prediction is true, then epigenetic silencing of MORT should be an early identifiable lesion during human carcinogenesis and predicted to occur in premalignant lesions where cells have acquired pathologic immortality on their route to malignant transformation. Indeed, recent work has shown that MORT is epigenetically silenced in both DCIS, a premalignant lesion of invasive breast cancer, and colonic adenomas, a premalignant lesion of colon adenocarcinoma. [7] Furthermore epigenetic silencing of MORT is associated with luminal, hormone receptor positive breast cancer, overexpression of the oncogene CCND1 , and GATA3 mutations, but is negatively correlated with p53 mutations. [7] In summary, aberrant DNA hypermethylation-mediated epigenetic silencing of MORT occurs early during human carcinogenesis apparently coincident with when a mortal cell pathologically transitions to an immortal cell.

Cellular Function

The precise molecular function of MORT remains enigmatic; however, it is known that MORT is found preferentially in the cell cytoplasm with differential density centrifugation showing that MORT is enriched in the 100,000 g fraction, which contains polysomes, microsomes, endoplasmic reticulum, and the plasma membrane. [8] Evidence is mounting that MORT acts as a regulator of protein translation through interactions with RNA binding proteins.

Related Research Articles

Malignant transformation is the process by which cells acquire the properties of cancer. This may occur as a primary process in normal tissue, or secondarily as malignant degeneration of a previously existing benign tumor.

<span class="mw-page-title-main">Precancerous condition</span> Medical condition

A precancerous condition is a condition, tumor or lesion involving abnormal cells which are associated with an increased risk of developing into cancer. Clinically, precancerous conditions encompass a variety of abnormal tissues with an increased risk of developing into cancer. Some of the most common precancerous conditions include certain colon polyps, which can progress into colon cancer, monoclonal gammopathy of undetermined significance, which can progress into multiple myeloma or myelodysplastic syndrome. and cervical dysplasia, which can progress into cervical cancer. Bronchial premalignant lesions can progress to squamous cell carcinoma of the lung.

<span class="mw-page-title-main">Endometrial intraepithelial neoplasia</span>

Endometrial intraepithelial neoplasia (EIN) is a premalignant lesion of the uterine lining that predisposes to endometrioid endometrial adenocarcinoma. It is composed of a collection of abnormal endometrial cells, arising from the glands that line the uterus, which have a tendency over time to progress to the most common form of uterine cancer—endometrial adenocarcinoma, endometrioid type.

The Cancer Genome Atlas (TCGA) is a project to catalogue the genetic mutations responsible for cancer using genome sequencing and bioinformatics. The overarching goal was to apply high-throughput genome analysis techniques to improve the ability to diagnose, treat, and prevent cancer through a better understanding of the genetic basis of the disease.

<span class="mw-page-title-main">RASSF1</span>

Ras association domain-containing protein 1 is a protein that in humans is encoded by the RASSF1 gene.

<span class="mw-page-title-main">O-6-methylguanine-DNA methyltransferase</span>

O6-alkylguanine DNA alkyltransferase (also known as AGT, MGMT or AGAT) is a protein that in humans is encoded by the O6-methylguanine DNA methyltransferase (MGMT) gene. O6-methylguanine DNA methyltransferase is crucial for genome stability. It repairs the naturally occurring mutagenic DNA lesion O6-methylguanine back to guanine and prevents mismatch and errors during DNA replication and transcription. Accordingly, loss of MGMT increases the carcinogenic risk in mice after exposure to alkylating agents. The two bacterial isozymes are Ada and Ogt.

<span class="mw-page-title-main">Secreted frizzled-related protein 1</span>

Secreted frizzled-related protein 1, also known as SFRP1, is a protein which in humans is encoded by the SFRP1 gene.

<span class="mw-page-title-main">H19 (gene)</span> Negative regulation (or limiting) of body weight and cell proliferation

H19 is a gene for a long noncoding RNA, found in humans and elsewhere. H19 has a role in the negative regulation of body weight and cell proliferation. This gene also has a role in the formation of some cancers and in the regulation of gene expression. .

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">EMP3</span> Protein-coding gene in the species Homo sapiens

Epithelial membrane protein 3 (EMP3) is a trans-membrane signaling molecule that is encoded by the myelin-related gene EMP3. EMP3 is a member of the peripheral myelin protein gene family 22-kDa (PMP22), which is mainly responsible for the formation of the sheath of compact myelin. Although the detailed functions and mechanisms of EMP3 still remain unclear, it is suggested that EMP3 is possibly epigenetically linked to certain carcinomas.

<span class="mw-page-title-main">YPEL3</span> Proteine

Yippee-like 3 (Drosophila) is a protein that in humans is encoded by the YPEL3 gene. YPEL3 has growth inhibitory effects in normal and tumor cell lines. One of five family members (YPEL1-5), YPEL3 was named in reference to its Drosophila melanogaster orthologue. Initially discovered in a gene expression profiling assay of p53 activated MCF7 cells, induction of YPEL3 has been shown to trigger permanent growth arrest or cellular senescence in certain human normal and tumor cell types. DNA methylation of a CpG island near the YPEL3 promoter as well as histone acetylation may represent possible epigenetic mechanisms leading to decreased gene expression in human tumors.

miR-137

In molecular biology, miR-137 is a short non-coding RNA molecule that functions to regulate the expression levels of other genes by various mechanisms. miR-137 is located on human chromosome 1p22 and has been implicated to act as a tumor suppressor in several cancer types including colorectal cancer, squamous cell carcinoma and melanoma via cell cycle control.

mir-205

In molecular biology miR-205 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms. They are involved in numerous cellular processes, including development, proliferation, and apoptosis. Currently, it is believed that miRNAs elicit their effect by silencing the expression of target genes.

mir-22

In molecular biology mir-22 microRNA is a short RNA molecule. MicroRNAs are an abundant class of molecules, approximately 22 nucleotides in length, which can post-transcriptionally regulate gene expression by binding to the 3' UTR of mRNAs expressed in a cell.

<span class="mw-page-title-main">ZNF703</span>

ZNF703 is a gene which has been linked with the development of breast cancers. ZNF703 is contained within the NET/N1z family responsible for regulation of transcription essential for developmental growth especially in the hindbrain. Normal functions performed by ZNF703 include adhesion, movement and proliferation of cells. ZNF703 directly accumulates histone deacetylases at gene promoter regions but does not bind to functional DNA.

<span class="mw-page-title-main">Field cancerization</span> Biological process

Field cancerization or field effect is a biological process in which large areas of cells at a tissue surface or within an organ are affected by carcinogenic alterations. The process arises from exposure to an injurious environment, often over a lengthy period.

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

<span class="mw-page-title-main">DIRAS3 (gene)</span> Mammalian protein found in Homo sapiens

GTP-binding protein Di-Ras3 (DIRAS3) also known as aplysia ras homology member I (ARHI) is a protein that in humans is encoded by the DIRAS3 gene.

DNA methylation in cancer plays a variety of roles, helping to change the healthy regulation of gene expression to a disease pattern.

CpG island hypermethylation is a phenomenon that is important for the regulation of gene expression in cancer cells, as an epigenetic control aberration responsible for gene inactivation. Hypermethylation of CpG islands has been described in almost every type of tumor.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000166770 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. 1 2 3 4 5 Vrba L, Garbe JC, Stampfer MR, Futscher BW (2015). "A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers". Epigenetics. 10 (11): 1074–1083. doi:10.1080/15592294.2015.1106673. PMC   4844203 . PMID   26646903.
  4. "MORT expression in Illumina Body Map Data".
  5. "Cancer Facts & Figures" (PDF). Atlanta: American Cancer Society. 2015.
  6. Zhao LP, Li RH, Han DM, Zhang XQ, Nian GX, Wu MX, Feng Y, Zhang L, Sun ZG (2017). "Independent prognostic Factor of low-expressed LncRNA ZNF667-AS1 for cervical cancer and inhibitory function on the proliferation of cervical cancer". European Review for Medical and Pharmacological Sciences. 21 (23): 5353–5360. doi:10.26355/eurrev_201712_13920. PMID   29243775. S2CID   24001354.
  7. 1 2 Vrba L, Futscher BW (June 2017). "Epigenetic Silencing of MORT Is an Early Event in Cancer and Is Associated with Luminal, Receptor Positive Breast Tumor Subtypes". Journal of Breast Cancer. 20 (2): 198–202. doi:10.4048/jbc.2017.20.2.198. PMC   5500404 . PMID   28690657.
  8. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). Molecular Cell Biology (4th ed.). New York: W. H. Freeman. ISBN   978-0-7167-3136-8.