MSH5

Last updated
MSH5
Identifiers
Aliases MSH5 , G7, MUTSH5, NG23, mutS homolog 5, POF13
External IDs OMIM: 603382 MGI: 1329021 HomoloGene: 8415 GeneCards: MSH5
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_172166
NM_002441
NM_025259
NM_172165

NM_001146215
NM_013600

RefSeq (protein)

NP_002432
NP_079535
NP_751897
NP_751898
NP_751897.1

Contents

NP_001139687
NP_038628

Location (UCSC) Chr 6: 31.74 – 31.76 Mb Chr 17: 35.03 – 35.05 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

MutS protein homolog 5 is a protein that in humans is encoded by the MSH5 gene. [5] [6] [7] [8]

Function

This gene encodes a member of the mutS family of proteins that are involved in DNA mismatch repair or meiotic recombination processes. This protein is similar to a Saccharomyces cerevisiae protein that participates in meiotic segregation fidelity and crossing-over. This protein forms heterooligomers with another member of this family, mutS homolog 4. Alternative splicing results in four transcript variants encoding three different isoforms. [8]

Mutations

Mice homozygous for a null Msh5 mutation (Msh5-/-) are viable but sterile. [9] In these mice, the prophase I stage of meiosis is defective due to the disruption of chromosome pairing. This meiotic failure leads, in male mice, to diminution of testicular size, and in female mice, to a complete loss of ovarian structures.

A genetic investigation was performed to test women with premature ovarian failure for mutations in each of four meiotic genes. [10] Among 41 women with premature ovarian failure two were found to be heterozygous for a mutation in the MSH5 gene; among 34 fertile women (controls) no mutations were found in the four tested genes.

These findings in mouse and human indicate that the MSH5 protein plays an important role in meiotic recombination.

In the worm Caenorhabditis elegans , the MSH5 protein is required during meiosis both for normal spontaneous and for gamma-irradiation induced crossover recombination and chiasma formation. [11] Meiotic recombination is often initiated by double strand breaks. MSH5 mutants retain the competence to repair DNA double-strand breaks that are present during meiosis, but they accomplish this repair in a way that does not lead to crossovers between homologous chromosomes. [11] The known mechanism of non-crossover recombinational repair is called synthesis dependent strand annealing (see homologous recombination). MSH5 thus appears to be employed in directing the recombinational repair of some double-strand breaks towards the cross over option rather than the non-cross over option.

Interactions

MSH5 has been shown to interact with MSH4. [6] [12] [13]

Related Research Articles

<span class="mw-page-title-main">Meiosis</span> Type of cell division in sexually-reproducing organisms used to produce gametes

Meiosis is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately result in four cells with only one copy of each chromosome (haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and female will fuse to create a cell with two copies of each chromosome again, the zygote.

<span class="mw-page-title-main">Chromosomal crossover</span> Cellular process

Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called synapsis. Synapsis begins before the synaptonemal complex develops and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.

<span class="mw-page-title-main">Synapsis</span> Biological phenomenon in meiosis

Synapsis is the pairing of two chromosomes that occurs during meiosis. It allows matching-up of homologous pairs prior to their segregation, and possible chromosomal crossover between them. Synapsis takes place during prophase I of meiosis. When homologous chromosomes synapse, their ends are first attached to the nuclear envelope. These end-membrane complexes then migrate, assisted by the extranuclear cytoskeleton, until matching ends have been paired. Then the intervening regions of the chromosome are brought together, and may be connected by a protein-RNA complex called the synaptonemal complex. During synapsis, autosomes are held together by the synaptonemal complex along their whole length, whereas for sex chromosomes, this only takes place at one end of each chromosome.

<span class="mw-page-title-main">Holliday junction</span> Branched nucleic acid structure

A Holliday junction is a branched nucleic acid structure that contains four double-stranded arms joined. These arms may adopt one of several conformations depending on buffer salt concentrations and the sequence of nucleobases closest to the junction. The structure is named after Robin Holliday, the molecular biologist who proposed its existence in 1964.

<span class="mw-page-title-main">MSH2</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Msh2 also known as MutS homolog 2 or MSH2 is a protein that in humans is encoded by the MSH2 gene, which is located on chromosome 2. MSH2 is a tumor suppressor gene and more specifically a caretaker gene that codes for a DNA mismatch repair (MMR) protein, MSH2, which forms a heterodimer with MSH6 to make the human MutSα mismatch repair complex. It also dimerizes with MSH3 to form the MutSβ DNA repair complex. MSH2 is involved in many different forms of DNA repair, including transcription-coupled repair, homologous recombination, and base excision repair.

<span class="mw-page-title-main">MLH1</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Mlh1 or MutL protein homolog 1 is a protein that in humans is encoded by the MLH1 gene located on chromosome 3. It is a gene commonly associated with hereditary nonpolyposis colorectal cancer. Orthologs of human MLH1 have also been studied in other organisms including mouse and the budding yeast Saccharomyces cerevisiae.

<span class="mw-page-title-main">MSH6</span> Protein-coding gene in the species Homo sapiens

MSH6 or mutS homolog 6 is a gene that codes for DNA mismatch repair protein Msh6 in the budding yeast Saccharomyces cerevisiae. It is the homologue of the human "G/T binding protein," (GTBP) also called p160 or hMSH6. The MSH6 protein is a member of the Mutator S (MutS) family of proteins that are involved in DNA damage repair.

<span class="mw-page-title-main">Spo11</span> Protein-coding gene in the species Homo sapiens

Spo11 is a protein that in humans is encoded by the SPO11 gene. Spo11, in a complex with mTopVIB, creates double strand breaks to initiate meiotic recombination. Its active site contains a tyrosine which ligates and dissociates with DNA to promote break formation. One Spo11 protein is involved per strand of DNA, thus two Spo11 proteins are involved in each double stranded break event.

Chromosome segregation is the process in eukaryotes by which two sister chromatids formed as a consequence of DNA replication, or paired homologous chromosomes, separate from each other and migrate to opposite poles of the nucleus. This segregation process occurs during both mitosis and meiosis. Chromosome segregation also occurs in prokaryotes. However, in contrast to eukaryotic chromosome segregation, replication and segregation are not temporally separated. Instead segregation occurs progressively following replication.

<span class="mw-page-title-main">Exonuclease 1</span> Protein-coding gene in the species Homo sapiens

Exonuclease 1 is an enzyme that in humans is encoded by the EXO1 gene.

<span class="mw-page-title-main">MSH3</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein, MutS Homolog 3 (MSH3) is a human homologue of the bacterial mismatch repair protein MutS that participates in the mismatch repair (MMR) system. MSH3 typically forms the heterodimer MutSβ with MSH2 in order to correct long insertion/deletion loops and base-base mispairs in microsatellites during DNA synthesis. Deficient capacity for MMR is found in approximately 15% of colorectal cancers, and somatic mutations in the MSH3 gene can be found in nearly 50% of MMR-deficient colorectal cancers.

<span class="mw-page-title-main">PMS1</span> Protein-coding gene in the species Homo sapiens

PMS1 protein homolog 1 is a protein that in humans is encoded by the PMS1 gene.

<span class="mw-page-title-main">DMC1 (gene)</span> Protein-coding gene in the species Homo sapiens

Meiotic recombination protein DMC1/LIM15 homolog is a protein that in humans is encoded by the DMC1 gene.

<span class="mw-page-title-main">MSH4</span> Protein-coding gene in the species Homo sapiens

MutS protein homolog 4 is a protein that in humans is encoded by the MSH4 gene.

<span class="mw-page-title-main">MUS81</span> Protein-coding gene in the species Homo sapiens

Crossover junction endonuclease MUS81 is an enzyme that in humans is encoded by the MUS81 gene.

<span class="mw-page-title-main">MLH3</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Mlh3 is a protein that in humans is encoded by the MLH3 gene.

<span class="mw-page-title-main">RAD54B</span> Protein-coding gene in the species Homo sapiens

DNA repair and recombination protein RAD54B is a protein that in humans is encoded by the RAD54B gene.

<span class="mw-page-title-main">REC8</span> Protein-coding gene in the species Homo sapiens

Meiotic recombination protein REC8 homolog is a protein that in humans is encoded by the REC8 gene.

<span class="mw-page-title-main">Meiotic recombination checkpoint</span>

The meiotic recombination checkpoint monitors meiotic recombination during meiosis, and blocks the entry into metaphase I if recombination is not efficiently processed.

<span class="mw-page-title-main">SMC1B</span> Protein-coding gene in the species Homo sapiens

Structural maintenance of chromosomes protein 1B (SMC-1B) is a protein that in humans is encoded by the SMC1B gene. SMC-1B belongs to a family of proteins required for chromatid cohesion and DNA recombination during meiosis and mitosis. SMC1ß protein appears to participate with other cohesins REC8, STAG3 and SMC3 in sister-chromatid cohesion throughout the whole meiotic process in human oocytes.

References

  1. 1 2 3 ENSG00000235569, ENSG00000204410, ENSG00000230293, ENSG00000235222, ENSG00000237333, ENSG00000227314, ENSG00000233345 GRCh38: Ensembl release 89: ENSG00000230961, ENSG00000235569, ENSG00000204410, ENSG00000230293, ENSG00000235222, ENSG00000237333, ENSG00000227314, ENSG00000233345 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000007035 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Her C, Doggett NA (Aug 1998). "Cloning, structural characterization, and chromosomal localization of the human orthologue of Saccharomyces cerevisiae MSH5 gene". Genomics. 52 (1): 50–61. doi:10.1006/geno.1998.5374. PMID   9740671.
  6. 1 2 Winand NJ, Panzer JA, Kolodner RD (Oct 1998). "Cloning and characterization of the human and Caenorhabditis elegans homologs of the Saccharomyces cerevisiae MSH5 gene". Genomics. 53 (1): 69–80. doi:10.1006/geno.1998.5447. PMID   9787078.
  7. Snowden T, Shim KS, Schmutte C, Acharya S, Fishel R (Jan 2008). "hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery". The Journal of Biological Chemistry. 283 (1): 145–54. doi: 10.1074/jbc.M704060200 . PMC   2841433 . PMID   17977839.
  8. 1 2 "Entrez Gene: MSH5 mutS homolog 5 (E. coli)".
  9. Edelmann W, Cohen PE, Kneitz B, Winand N, Lia M, Heyer J, Kolodner R, Pollard JW, Kucherlapati R (Jan 1999). "Mammalian MutS homologue 5 is required for chromosome pairing in meiosis". Nature Genetics. 21 (1): 123–7. doi:10.1038/5075. PMID   9916805. S2CID   28944216.
  10. Mandon-Pépin B, Touraine P, Kuttenn F, Derbois C, Rouxel A, Matsuda F, Nicolas A, Cotinot C, Fellous M (Jan 2008). "Genetic investigation of four meiotic genes in women with premature ovarian failure". European Journal of Endocrinology. 158 (1): 107–15. doi: 10.1530/EJE-07-0400 . PMID   18166824.
  11. 1 2 Kelly KO, Dernburg AF, Stanfield GM, Villeneuve AM (Oct 2000). "Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis". Genetics. 156 (2): 617–30. doi:10.1093/genetics/156.2.617. PMC   1461284 . PMID   11014811.
  12. Her C, Wu X, Griswold MD, Zhou F (Feb 2003). "Human MutS homologue MSH4 physically interacts with von Hippel-Lindau tumor suppressor-binding protein 1". Cancer Research. 63 (4): 865–72. PMID   12591739.
  13. Bocker T, Barusevicius A, Snowden T, Rasio D, Guerrette S, Robbins D, Schmidt C, Burczak J, Croce CM, Copeland T, Kovatich AJ, Fishel R (Feb 1999). "hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis". Cancer Research. 59 (4): 816–22. PMID   10029069.

Further reading