Madeira Abyssal Plain, also called Madeira Plain, is an abyssal plain situated at the center and deepest part of the Canary Basin. It is a north-northeast to south-southeast elongated basin that almost parallels the Mid-Atlantic Ridge. Its western boundary is marked by a chain of seamounts known as the either Seewarte Seamounts or Atlantis-Great Meteor Seamount Chain. Its eastern boundary is a distinct break of slope that marks the foot of the African Continental Rise. This abyssal plain occupies an area of about 68,000 km2 (26,000 sq mi). Across this basin, slope angles are generally less than 0.01°. [1] [2] [3]
For research purposes, the Madeira Abyssal Plain can be divided into three sub-basins. They are a southern sub-basin, which lies at a water depth of about 5,350 meters (17,550 ft), a central sub-basin which lies at a deeper water depth of about 5,440 meters (17,850 ft), and the northern sub-basin which lies at an intermediate water depth of about 5,420 meters (17,780 ft). The central sub-basin, which is also known as Great Meteor East after a seamount situated to the west, occupies a broad area of 57,187 km2 (22,080 sq mi) and is bounded by about the 5,400 meters (17,700 ft)-contour. [1] [2] [3]
The central sub-basin of the Madeira Abyssal Plain is relatively flat plain that is occasionally interrupted by small abyssal hills of a few hundred meters in height and draped by pelagic and hemipelagic sediments. These abyssal hills become more numerous to the north, south and west where they form the boundaries of the central sub-basin. [1] [2] [3]
In 1980, the Nuclear Energy Agency's Seabed Working Group selected the Madeira Abyssal Plain as a site for the possible disposal of heat-emitting radioactive waste. [4] Even though this concept was later abandoned, it resulted in this region being the location for intensive studies of its bathymetry, geology, oceanography, and biota. [1] Since the 1980s, the Madeira Abyssal Plain has been studied in detail by the Ocean Drilling Program and research concerning the Moroccan Turbidite System. [5] [6]
An average of 1.1 kilometers (0.68 mi) of exclusively deep-sea sediments, resting upon oceanic crust, underlies the Madeira Abyssal Plain. Seismic reflection profiles across the Canary Basin and Madeira Abyssal Plain reveal north-northeast – south-southwest ridge and trough terrain typical of oceanic crust and west-northwest – east-southeast striking fracture zone valleys that are spaced about 100 kilometers (62 mi) part. Because most of the Madeira Abyssal Plain lies within the Cretaceous Superchron, the oceanic crust underlying it cannot be precisely dated by magnetic striping. However, interpolation between recognised magnetic stripes estimated an age range of about 75 to 105 Ma for the oceanic crust underlying the central sub-basin. [4] [5] [7]
Immediately overlying the oceanic crust is a layer of hemipelagic sediments. These sediments average 200 meters (660 ft) in thickness and are expected to consist predominantly of hemipelagic clay. [8]
Overlying the hemipelagic sediments, are alternating turbidites and thin beds of pelagic sediment. These sediments initially in filled irregularities on the uneven surface of the hemipelagic sediments to produce a flat plain that later turbidites accumulated. The total thickness of turbidites that have accumulated averages 350 meters (1,150 ft) in thickness. In a few deep troughs within the oceanic crust, the total thickness of turbidites may reach 530 meters (1,740 ft). In seismic reflection, the sequence of turbidites varies from being strongly acoustically laminated near the top to poorly stratified to transparent near the base. An individual turbidite often consists of 100–200 km3 (24–48 cu mi) of sediment spread across the entire Madeira Abyssal Plain. It is typically fine-grained, except in the proximal parts of the plain. The deposition of a typical turbidite causes little or no erosion of the underlying bed. A thin bed of fine-grained, pelagic sediment typically separates successive turbidites. [8] [9] [10]
Based upon composition, the turbidites have been divided into three groups. First, there are a group of organic-rich turbidites. These turbidites represent organic-rich sediments that turbidity currents transported from two sources, one north and one south of the Canary Islands. These turbidites are typically bicolored turbidite units. Their base is usually olive green where the organic material remains below surface oxidation and their upper part is pale green where the organic material has been oxidized. Second, there are volcanic turbidites composed largely of sediment derived from either volcanic seamounts or islands. These turbidites represent the distal sediments of turbidity currents generated by massive submarine landslides resulting from the collapse of the flanks of volcanic seamounts or islands within either the Canary islands or Madeira Archipelago. Finally, there are calcareous turbidites derived from submarine landslides effecting one of the Seewarte Seamounts to the west of the Madeira Abyssal Plain. [8] [9] [10]
Thin pelagic layers separated individual turbidites. As determined by microfossils, each individual layer often represents several tens of thousands of years of pelagic sedimentation in a deep sea, abyssal environment. Depending on the carbonate compensation depth at the time of deposition, these layers consist either of calcareous ooze, marls, or clay. During the last 2.6 million years within the region of the Madeira Abyssal Plain, carbonate compensation depth has been closely controlled by the general circulation of ocean currents and has oscillated in phase with climatic shifts. During interglacial periods, the carbonate compensation depth was quite deep. This allowed for the preservation of calcareous microfossils, e.g. foraminifera and coccoliths, in the Madeira Abyssal Plain and the formation of calcareous ooze. Conversely, during glacial periods, and prior to 2.6 million years ago, the carbonate compensation depth was shallower. This leads either to poor preservation of calcareous microfossils and frequently no preservation of them at all and, respectively, the accumulation of either marl or clay to form pelagic layers. [8] [9] [10]
A turbidite is the geologic deposit of a turbidity current, which is a type of amalgamation of fluidal and sediment gravity flow responsible for distributing vast amounts of clastic sediment into the deep ocean.
An abyssal plain is an underwater plain on the deep ocean floor, usually found at depths between 3,000 metres (9,800 ft) and 6,000 metres (20,000 ft). Lying generally between the foot of a continental rise and a mid-ocean ridge, abyssal plains cover more than 50% of the Earth's surface. They are among the flattest, smoothest, and least explored regions on Earth. Abyssal plains are key geologic elements of oceanic basins.
Carbonate compensation depth (CCD) is the depth in the oceans below which the rate of supply of calcite lags behind the rate of solvation, such that no calcite is preserved. Shells of animals therefore dissolve and carbonate particles may not accumulate in the sediments on the sea floor below this depth. Aragonite compensation depth describes the same behaviour in reference to aragonitic carbonates. Aragonite is more soluble than calcite, so the aragonite compensation depth is generally shallower than the calcite compensation depth.
The Kermadec Trench is a linear ocean trench in the south Pacific Ocean. It stretches about 1,000 km (620 mi) from the Louisville Seamount Chain in the north (26°S) to the Hikurangi Plateau in the south (37°S), north-east of New Zealand's North Island. Together with the Tonga Trench to the north, it forms the 2,000 km (1,200 mi)-long, near-linear Kermadec-Tonga subduction system, which began to evolve in the Eocene when the Pacific Plate started to subduct beneath the Australian Plate. Convergence rates along this subduction system are among the fastest on Earth, 80 mm (3.1 in)/yr in the north and 45 mm (1.8 in)/yr in the south.
The Windermere Supergroup is a geological unit formed during the Ordovician to Silurian periods ~450 million years ago, and exposed in northwest England, including the Pennines and correlates along its strike, in the Isle of Man and Ireland, and down-dip in the Southern Uplands and Welsh Borderlands. It underlies much of north England's younger cover, extending south to East Anglia. It formed as a foreland basin, in a similar setting to the modern Ganges basin, fronting the continent of Avalonia as the remains of the attached Iapetus ocean subducted under Laurentia.
Radiolarite is a siliceous, comparatively hard, fine-grained, chert-like, and homogeneous sedimentary rock that is composed predominantly of the microscopic remains of radiolarians. This term is also used for indurated radiolarian oozes and sometimes as a synonym of radiolarian earth. However, radiolarian earth is typically regarded by Earth scientists to be the unconsolidated equivalent of a radiolarite. A radiolarian chert is well-bedded, microcrystalline radiolarite that has a well-developed siliceous cement or groundmass.
The Rockall Trough is a deep-water bathymetric feature to the northwest of Scotland and Ireland, running roughly from southwest to northeast, flanked on the north by the Rockall Plateau and to the south by the Porcupine Seabight. At the northern end, the channel is bounded by the Wyville-Thomson Ridge, named after Charles Wyville Thomson, professor of zoology at the University of Edinburgh and driving force behind the Challenger Expedition. At the southern end, the trough opens into the Porcupine abyssal plain. The Rockall Basin is a large sedimentary basin that lies beneath the trough. Both are named after Rockall, a rocky islet lying 301.4 km west of St Kilda.
The Eratosthenes Seamount or Eratosthenes Tablemount is a seamount in the Eastern Mediterranean, in the Levantine basin about 100 km south of western Cyprus. Unlike most seamounts, it is a carbonate platform not a volcano. It is a large, submerged massif, about 120 km long and 80 km wide. Its peak lies at the depth of 690 m and it rises 2000 m above the surrounding seafloor, which is located at the depth of up to 2,700 m and is a part of the Herodotus Abyssal Plain. It is one of the largest features on the Eastern Mediterranean seafloor.
The continental rise is a low-relief zone of accumulated sediments that lies between the continental slope and the abyssal plain. It is a major part of the continental margin, covering around 10% of the ocean floor.
Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea. Additional deposits come from marine organisms and chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.
The geology of the Iberian Peninsula consists of the study of the rock formations on the Iberian Peninsula, which includes Spain, Portugal, Andorra, and Gibraltar. The peninsula contains rocks from every geological period from the Ediacaran to the Quaternary, and many types of rock are represented. World-class mineral deposits are also found there.
The Tyrrhenian Basin is a sedimentary basin located in the western Mediterranean Sea under the Tyrrhenian Sea. It covers a 231,000 km2 area that is bounded by Sardinia to the west, Corsica to the northwest, Sicily to the southeast, and peninsular Italy to the northeast. The Tyrrhenian basin displays an irregular seafloor marked by several seamounts and two distinct sub-basins - the Vavilov and Marsili basins. The Vavilov deep plain contains the deepest point of the Tyrrhenian basin at approximately 3785 meters. The basin trends roughly northwest–southeast with the spreading axis trending northeast–southwest.
The Tarfaya Basin is a structural basin located in southern Morocco that extends westward into the Moroccan territorial waters in the Atlantic Ocean. The basin is named for the city of Tarfaya located near the border of Western Sahara, a region governed by the Kingdom of Morocco. The Canary Islands form the western edge of the basin and lie approximately 100 km to the west.
Lo-En or Hess is an Albian–Campanian guyot in the Marshall Islands. One among a number of seamounts in the Pacific Ocean, it was probably formed by a hotspot in what is present-day French Polynesia. Lo-En lies southeast of Eniwetok which rises above sea level, and Lo-En is almost connected to it through a ridge.
The geology of Bulgaria consists of two major structural features. The Rhodope Massif in southern Bulgaria is made up of Archean, Proterozoic and Cambrian rocks and is a sub-province of the Thracian-Anatolian polymetallic province. It has dropped down, faulted basins filled with Cenozoic sediments and volcanic rocks. The Moesian Platform to the north extends into Romania and has Paleozoic rocks covered by rocks from the Mesozoic, typically buried by thick Danube River valley Quaternary sediments. In places, the Moesian Platform has small oil and gas fields. Bulgaria is a country in southeastern Europe. It is bordered by Romania to the north, Serbia and North Macedonia to the west, Greece and Turkey to the south, and the Black Sea to the east.
The geology of the island Barbados includes exposures of reef-related carbonate rocks spanning 85 percent of the island's surface. This coral rock formation is 70 meters thick and dates to the Pleistocene. Unlike neighboring islands in the Lesser Antilles volcanic arc, Barbados is unusual because it is not a volcanic island. Instead, the island of Barbados is the exposed part of the Barbados Ridge Accretionary Prism, left as deep ocean sediments "scraped" to the surface as the Atlantic oceanic crust subducted beneath the Caribbean Plate.
Echo Bank is an underwater mountain, part of Canary Islands Seamount Province and located southwest of the Canary Islands. Of uncertain geologic origin, it is part of a larger cluster of submarine mountains and rises to a depth of 255 metres (837 ft) below sea level. It has a flat top, indicating that it formerly might have emerged from the sea.
Tropic Seamount is a Cretaceous seamount, part of the Canary Islands Seamount Province. It is located west of the Western Sahara's coastline and southwest of the Canary Islands, north of Cape Verde. It is one of a number of seamounts in this part of the Atlantic Ocean, probably formed by volcanic processes triggered by the proximity to the African continent. Tropic Seamount is located at a depth of 970 metres (3,180 ft) and has a summit platform with an area of 120 square kilometres (46 sq mi).
Coral Patch Seamount is a seamount between Madeira and mainland Portugal in the North Atlantic Ocean. It is an elongated 120 kilometres (75 mi) long and 70 kilometres (43 mi) wide mountain that rises to a depth of about 645 metres (2,116 ft), with nine volcanic cones on its summit. It has steeper southern slopes and a gentle northern slope. To its west lies Ampére Seamount, and together with several neighbouring seamounts it is one of the Horseshoe Seamounts.