Magnetic diffusion

Last updated

Magnetic diffusion refers to the motion of magnetic fields, typically in the presence of a conducting solid or fluid such as a plasma. The motion of magnetic fields is described by the magnetic diffusion equation and is due primarily to induction and diffusion of magnetic fields through the material. The magnetic diffusion equation is a partial differential equation commonly used in physics. Understanding the phenomenon is essential to magnetohydrodynamics and has important consequences in astrophysics, geophysics, and electrical engineering.

Contents

Equation

The magnetic diffusion equation (also referred to as the induction equation ) is where is the permeability of free space and is the electrical conductivity of the material, which is assumed to be constant. denotes the (non-relativistic) velocity of the plasma. The first term on the right hand side accounts for effects from induction of the plasma, while the second accounts for diffusion. The latter acts as a dissipation term, resulting in a loss of magnetic field energy to heat. The relative importance of the two terms is characterized by the magnetic Reynolds number, .

In the case of a non-uniform conductivity the magnetic diffusion equation is however, it becomes significantly harder to solve.

Derivation

Starting from the generalized Ohm's law: [1] [2] and the curl equations for small displacement currents (i.e. low frequencies) substitute into the Ampere-Maxwell law to get Taking the curl of the above equation and substituting into Faraday's law, This expression can be simplified further by writing it in terms of the i-th component of and the Levi-Cevita tensor : Using the identity [3] and recalling , the cross products can be eliminated: Written in vector form, the final expression is where is the material derivative. This can be rearranged into a more useful form using vector calculus identities and : In the case , this becomes a diffusion equation for the magnetic field, where is the magnetic diffusivity.

Limiting Cases

In some cases it is possible to neglect one of the terms in the magnetic diffusion equation. This is done by estimating the magnetic Reynolds number where is the diffusivity, is the magnitude of the plasma's velocity and is a characteristic length of the plasma.

Physical ConditionDominating TermMagnetic Diffusion EquationExamples
 Large electrical conductivity, large length scales or high plasma velocity.The inductive term dominates in this case. The motion of magnetic fields is determined by the flow of the plasma. This is the case for most naturally occurring plasmas in the universe.   The Sun or the core of the earth
Small electrical conductivity, small length scales or low plasma velocity.The diffusive term dominates in this case. The motion of the magnetic field obeys the typical (nonconducting) fluid diffusion equation. Solar flares or created in laboratories using mercury or other liquid metals.

Relation to Skin Effect

At low frequencies, the skin depth for the penetration of an AC electromagnetic field into a conductor is: Comparing with the formula for , the skin depth is the diffusion length of the field over one period of oscillation:

Examples and Visualization

Example of magnetic field frozen into fluid flow. Magnetic shear flow.gif
Example of magnetic field frozen into fluid flow.

For the limit , the magnetic field lines become "frozen in" to the motion of the conducting fluid. A simple example illustrating this behavior has a sinusoidally-varying shear flow with a uniform initial magnetic field . The equation for this limit, , has the solution [4] As can be seen in the figure to the right, the fluid drags the magnetic field lines so that they obtain the sinusoidal character of the flow field.

For the limit , the magnetic diffusion equation is just a vector-valued form of the heat equation. For a localized initial magnetic field (e.g. Gaussian distribution) within a conducting material, the maxima and minima will asymptotically decay to a value consistent with Laplace's equation for the given boundary conditions.

Diffusion Times for Stationary Conductors

For stationary conductors with simple geometries a time constant called magnetic diffusion time can be derived. [5] Different one-dimensional equations apply for conducting slabs and conducting cylinders with constant magnetic permeability. Also, different diffusion time equations can be derived for nonlinear saturable materials such as steel.

Related Research Articles

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems published by mathematician Emmy Noether in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

<span class="mw-page-title-main">Displacement current</span> Physical quantity in electromagnetism

In electromagnetism, displacement current density is the quantity D/∂t appearing in Maxwell's equations that is defined in terms of the rate of change of D, the electric displacement field. Displacement current density has the same units as electric current density, and it is a source of the magnetic field just as actual current is. However it is not an electric current of moving charges, but a time-varying electric field. In physical materials, there is also a contribution from the slight motion of charges bound in atoms, called dielectric polarization.

"A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. Physicist Freeman Dyson called the publishing of the paper the "most important event of the nineteenth century in the history of the physical sciences."

In electromagnetism, the Lorenz gauge condition or Lorenz gauge is a partial gauge fixing of the electromagnetic vector potential by requiring The name is frequently confused with Hendrik Lorentz, who has given his name to many concepts in this field. The condition is Lorentz invariant. The Lorenz gauge condition does not completely determine the gauge: one can still make a gauge transformation where is the four-gradient and is any harmonic scalar function: that is, a scalar function obeying the equation of a massless scalar field.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations. In doing so, expressions for various transport coefficients such as thermal conductivity and viscosity are obtained in terms of molecular parameters. Thus, Chapman–Enskog theory constitutes an important step in the passage from a microscopic, particle-based description to a continuum hydrodynamical one.

<span class="mw-page-title-main">Matrix representation of Maxwell's equations</span>

In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium. A matrix representation for an inhomogeneous medium was presented using a pair of matrix equations. A single equation using 4 × 4 matrices is necessary and sufficient for any homogeneous medium. For an inhomogeneous medium it necessarily requires 8 × 8 matrices.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

References

  1. Holt, E. H.; Haskell, R. E. (1965). Foundations of Plasma Dynamics . New York: Macmillan. pp.  429-431.
  2. Chen, Francis F. (2016). Introduction to Plasma Physics and Controlled Fusion (3rd ed.). Heidelberg: Springer. pp. 192–194. ISBN   978-3-319-22308-7.
  3. Landau, L. D.; Lifshitz, E. M. (2013). The Classical Theory of Fields (4th revised ed.). New York: Elsevier. ISBN   9781483293288.
  4. Longcope, Dana (2002). "Notes on Magnetohydrodynamics" (PDF). Montana State University - Department of Physics. Retrieved 30 April 2019.
  5. Brauer, J. R. (2014). Magnetic Actuators and Sensors (2nd ed.). Hoboken NJ: Wiley IEEE Press. ISBN   978-1-118-50525-0.