Induction equation

Last updated

In magnetohydrodynamics, the induction equation is a partial differential equation that relates the magnetic field and velocity of an electrically conductive fluid such as a plasma. It can be derived from Maxwell's equations and Ohm's law, and plays a major role in plasma physics and astrophysics, especially in dynamo theory.

Contents

Mathematical statement

Maxwell's equations describing the Faraday's and Ampere's laws read:

and

where:

The displacement current can be neglected in a plasma as it is negligible compared to the current carried by the free charges. The only exception to this is for exceptionally high frequency phenomena: for example, for a plasma with a typical electrical conductivity of , the displacement current is smaller than the free current by a factor of for frequencies below .

The electric field can be related to the current density using the Ohm's law:

where

Combining these three equations, eliminating and , yields the induction equation for an electrically resistive fluid:

Here is the magnetic diffusivity (in the literature, the electrical resistivity, defined as , is often identified with the magnetic diffusivity). [1]

If the fluid moves with a typical speed and a typical length scale , then

The ratio of these quantities, which is a dimensionless parameter, is called the magnetic Reynolds number:

Perfectly-conducting limit

For a fluid with infinite electric conductivity, , the first term in the induction equation vanishes. This is equivalent to a very large magnetic Reynolds number. For example, it can be of order in a typical star. In this case, the fluid can be called a perfect or ideal fluid. So, the induction equation for an ideal conductive fluid such as most astrophysical plasmas is

This is taken to be a good approximation in dynamo theory, used to explain the magnetic field evolution in the astrophysical environments such as stars, galaxies and accretion discs.

Convective limit

More generally, the equation for the perfectly-conducting limit applies in regions of large spatial scale rather than infinite electric conductivity, (i.e., ), as this also makes the magnetic Reynolds number very large such that the diffusion term can be neglected. This limit is called "ideal-MHD" and its most important theorem is Alfvén's theorem (also called the frozen-in flux theorem).

Diffusive limit

For very small magnetic Reynolds numbers, the diffusive term overcomes the convective term. For example, in an electrically resistive fluid with large values of , the magnetic field is diffused away very fast, and the Alfvén's Theorem cannot be applied. This means magnetic energy is dissipated to heat and other types of energy. The induction equation then reads

It is common to define a dissipation time scale which is the time scale for the dissipation of magnetic energy over a length scale .

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

<span class="mw-page-title-main">Maxwell's equations</span> Equations describing classical electromagnetism

Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar, etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon. The modern form of the equations in their most common formulation is credited to Oliver Heaviside.

<span class="mw-page-title-main">Magnetohydrodynamics</span> Model of electrically conducting fluids

Magnetohydrodynamics is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Dynamo theory</span> Mechanism by which a celestial body generates a magnetic field

In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.

<span class="mw-page-title-main">Eddy current</span> Loops of electric current induced within conductors by a changing magnetic field

In electromagnetism, eddy currents are loops of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field. Eddy currents flow in closed loops within conductors, in planes perpendicular to the magnetic field. They can be induced within nearby stationary conductors by a time-varying magnetic field created by an AC electromagnet or transformer, for example, or by relative motion between a magnet and a nearby conductor. The magnitude of the current in a given loop is proportional to the strength of the magnetic field, the area of the loop, and the rate of change of flux, and inversely proportional to the resistivity of the material. When graphed, these circular currents within a piece of metal look vaguely like eddies or whirlpools in a liquid.

"A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. In the paper, Maxwell derives an electromagnetic wave equation with a velocity for light in close agreement with measurements made by experiment, and deduces that light is an electromagnetic wave.

<span class="mw-page-title-main">Faraday's law of induction</span> Basic law of electromagnetism

Faraday's law of induction is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic induction. It is the fundamental operating principle of transformers, inductors, and many types of electric motors, generators and solenoids.

<span class="mw-page-title-main">Magnetic reconnection</span> Process in plasma physics

Magnetic reconnection is a physical process occurring in electrically conducting plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection involves plasma flows at a substantial fraction of the Alfvén wave speed, which is the fundamental speed for mechanical information flow in a magnetized plasma.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

<span class="mw-page-title-main">Maxwell stress tensor</span> Mathematical description in electromagnetism

The Maxwell stress tensor is a symmetric second-order tensor used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

In magnetohydrodynamics, the magnetic Reynolds number (Rm) is a dimensionless quantity that estimates the relative effects of advection or induction of a magnetic field by the motion of a conducting medium to the magnetic diffusion. It is the magnetic analogue of the Reynolds number in fluid mechanics and is typically defined by:

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

The Clausius–Duhem inequality is a way of expressing the second law of thermodynamics that is used in continuum mechanics. This inequality is particularly useful in determining whether the constitutive relation of a material is thermodynamically allowable.

The bidomain model is a mathematical model to define the electrical activity of the heart. It consists in a continuum (volume-average) approach in which the cardiac microstructure is defined in terms of muscle fibers grouped in sheets, creating a complex three-dimensional structure with anisotropical properties. Then, to define the electrical activity, two interpenetrating domains are considered, which are the intracellular and extracellular domains, representing respectively the space inside the cells and the region between them.

<span class="mw-page-title-main">Scallop theorem</span>

In physics, the scallop theorem states that a swimmer that performs a reciprocal motion cannot achieve net displacement in a low-Reynolds number Newtonian fluid environment, i.e. a fluid that is highly viscous. Such a swimmer deforms its body into a particular shape through a sequence of motions and then reverts to the original shape by going through the sequence in reverse. It does not matter how fast or slow the swimmer executes the sequence. At low Reynolds number, time or inertia does not come into play, and the swimming motion is purely determined by the sequence of shapes that the swimmer assumes.

Magnetohydrodynamic turbulence concerns the chaotic regimes of magnetofluid flow at high Reynolds number. Magnetohydrodynamics (MHD) deals with what is a quasi-neutral fluid with very high conductivity. The fluid approximation implies that the focus is on macro length-and-time scales which are much larger than the collision length and collision time respectively.

In ideal magnetohydrodynamics, Alfvén's theorem, or the frozen-in flux theorem, states that electrically conducting fluids and embedded magnetic fields are constrained to move together in the limit of large magnetic Reynolds numbers. It is named after Hannes Alfvén, who put the idea forward in 1943.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

Magnetic diffusion refers to the motion of magnetic fields, typically in the presence of a conducting solid or fluid such as a plasma. The motion of magnetic fields is described by the magnetic diffusion equation and is due primarily to induction and diffusion of magnetic fields through the material. The magnetic diffusion equation is a partial differential equation commonly used in physics. Understanding the phenomenon is essential to magnetohydrodynamics and has important consequences in astrophysics, geophysics, and electrical engineering.

References

  1. Drake, R. Paul (2019). High-Energy-Density Physics (2nd ed.). Cham: Springer. p. 468. ISBN   978-3-319-67711-8.