Marine forensics

Last updated

Marine Forensic Science is forensic science applied to legal issues involving marine life. It also refers to the scientific study and investigation of human incidents, accidents, or deaths occurring as a result of or involving bodies of water including oceans, streams or rivers, lakes, or ponds. [1] Marine forensics uses law enforcement to protect fisheries resources, marine mammals, and endangered species. [2] Pollution from rapid industrialization and other human activities caused declination in fisheries resources and coral reefs have threatened marine life. On October 21, 1972, the Marine Mammal Protection Act of 1972 (MMPA) was enacted, [3] was enacted, protecting fisheries resources, marine mammals, and endangered species. DNA analysis plays a vital role in marine forensics, considering the flesh and blood of marine species in investigations, as well as recovery techniques for investigations that include human remains. However, a marine environment poses many challenges to the taphonomy of dead remains and to the investigation itself affecting the accuracy of results. [4] Many intrinsic and extrinsic factors have to be examined as the marine environment is constantly changing which can affect results. [4] Thus, a marine scientist is essential to be observant and cautious at all times during investigations.

Contents

History

Marine forensics dates from the 1970s when Congress passed the series of acts that protected fisheries, marine mammals, and endangered species, called the Marine Mammal Protection Act. [2]

The Marine Mammal Protection Act of 1972 [3]

At first, the act aimed to prevent the population of whales, seals, and porpoises from dropping exponentially by the disturbance of human activities. It focuses on preventing the number one cause of death among marine mammals which is the accidental capture in commercial fishing and subsequent fishing line entanglement. After 1994, the act “prohibits acts or attempts of harassment, killing, and capturing marine mammals without prior approval with a permit.”

However, these are the certain exceptions to the act: [5]

  1. Pre-MMPA specimens taken before December 21, 1972
  2. International Agreements entered into by the United States before December 21, 1972
  3. Alaska natives
  4. Scientific research, public display, enhancing the survival or recovery of a species, and incidental take in commercial fisheries
  5. Waivers granted by the U.S. Government

The first International Marine Forensics Symposium was held in April 2002 at Washington, DC [6]

Threats

Threats towards marine forensics involves radioactive and chemical pollution from rapid industrialization, fisheries and coral reefs in decline, and global warming and carbon balanced that can no longer be kept since the water is very polluted compared from back then making the water unable to absorb as much carbon-dioxide as before and increase risks of global warming to occur [6]

Waterborne diseases are a current threat towards marine forensics that are caused from an outbreak of various microorganisms and chemicals which can lead to illness and death for marine life and humans. [7] The Waterborne Disease and Outbreak Reporting System (WBDOSS) was created in 1971, and is a national surveillance system that collects data on waterborne diseases from all types of water. [7] WBDOSS can report on chemicals in the water from pollution as well as pathogens like bacteria, parasites, and viruses that cause gastrointestinal disease and respiratory disease. [7]

Training

Due to the complications in the process, a marine forensics scientist is required to have certain sets of skills such as the way to ask appropriate questions, how to work with uncooperative witnesses, and the understanding the specific goals of the company's incident investigation program. Investigators also need background on how incidents evolve and the myriad events and attributes which can cause or contribute to the severity of an incident [8]

Types of Evidence

Types of evidence varies depending on the severity of the case. With marine life cases, evidence can range from frozen fish fillets, scales, tissue, and bones, to coral reef or water samples [9] In 2012, researchers at the Virginia Institute of Marine Science shows that tests can be taken on seafood to identify the ocean's origin of blue marlin. [8] In forensic investigations involving incidents and deaths, evidence can range from the body itself, items and clothing, to environmental data such as water and soil samples, water and air temperatures, Salinity, depth readings, and current speeds. [10] The faster an investigator gets to a scene and documents the surroundings, the more physical evidence will be preserved due to the environment being uncontrolled and constantly changing. [11]

Data Acquisition

DNA analysis is an essential tool in forensics science. [2] As mentioned above, evidence will vary depending on the scenario. The process involves collecting and testing evidences in laboratories, along with analyzing evidences such as blood samples, dried tissue, fish fillets, and fish scales. [12] In forensic investigations, due to the nature of the environment, numerous data is collected right at arrival. The temperature outside and inside the water, the depth of the water, how fast the water is flowing, and the salinity of water is recorded to help estimate Corpse decomposition changes and where the body could be located. [13]

Marine Forensics utilizes diving, drones, and thermal imaging to help acquire data for the investigation. Unmanned aerial vehicles or drones have become a popular technology used for a variety of tasks in law enforcement as they are able to cover large amounts of terrain that are hard to access in short periods of time minimizing the need for a ground search. [14] UAV's provide overhead surveillance which may reveal hidden terrain or debris where certain items could be hiding not visible to the human eye. [14] Advancements in technology have been making it easier to locate remains in a marine environment through the use of thermal imaging, which creates pictures using heat/Infrared radiation by displaying various colors on a screen. [14] Drones are being manufactured with thermal imaging to pair with the convenient overhead searching in order to detect any heat signature from the decomposition of a hidden body. [14] Underwater search techniques have been developed for divers to use when searching for remains in a body of water. These patterns are the sweep pattern, pier-walk pattern, snag search, grid search, and overhead search which all allow the diver to search for any sized objects that may be in the water. [14]

Controversies

Maritime taphonomy impacts the accuracy in results in forensics. [15] Also, 80% and more maritime incidents are caused by human error. [16] Many of these maritime incidents or deaths may have nothing to do with water, only coincidentally happen to be near water. In these scenarios, it will be crucial for the investigation to determine the true manner and cause of death through investigative techniques and an Autopsy. [17] This is most common with natural diseases and injuries leading to a submersion in water like a Heart attack, Seizure, beatings, even intoxication. [17]

Environmental Factors

Temperatures

It is important to monitor the temperature of the air outside the water as well as inside the water as it will help in understanding decomposition of the remains. Normally, the temperature will be cooler in the water than the ambient air temperature which slows down the decomposition process, not including tropical bodies of water but due to the environment being uncontrolled and temperatures always changing, they must be recorded as soon as possible at arrival of the scene for accurate interpretation of the incident. [13]

Salinity

Salinity refers to the amount of salt content in a body of water and cannot be overlooked in marine forensics as freshwater and saltwater have many differences in taphonomy and decomposition. In saltwater, decomposition will proceed at a slower rate than in fresh water due to the high sodium content drawing fluids out of organs and slowing bacterial activity, whereas in freshwater, fluids are absorbed quicker into organs and the bloodstream causing rupturing. [18] It is important to know about salinity as it is responsible for buoyancy and why objects and remains float in water. Knowing the salinity level of the body of water in question will aid in where evidence might be located such as at the bottom of water or floating near the surface. [18]

Currents

Currents in water are a crucial factor to consider during marine investigations as they can answer many questions. If currents are involved in the body of water, it can drag/drift the evidence in question for a large distance to a location that does not match the wounds on the body adding confusion to the investigation. [13] From drifting for a long distance, the remains/evidence can bump into artifacts like rocks or trees causing post-mortem injuries and abrasions which can confuse investigators understanding the true cause of death. [13] Due to the buoyancy in saltwater like oceans, most remains float and will catch a tidal current causing it to drift for hundreds of kilometers, making it near impossible to find the remains, showing why marine investigators need to work as fast as possible at recovering evidence. [19] In freshwater, currents won't move the evidence too far from where it first was, but they risk getting post-mortem injuries from waterfalls, rapids, and narrow banks (geography). [19] Furthermore, when pollution from industrialization contaminates the water, tidal currents and river currents are able to spread it quite quickly with speeds from 5–100 miles per day, proving again why investigators need to be vigilant and work quickly at recovering evidence. [19]

Animal Predation

Animal predation is a factor to consider when launching an investigation in a marine environment. The longer an investigation is drawn out, the more potential there is for animals and sea life to create extensive changes to the evidence in question before it can be removed. [20] Sea lice and Sharks are examples that can alter features of a body and create more confusion in the investigation as to the nature of certain wounds. [20] Due to the nature of food webs, contaminants and pollution in water may spread rapidly from species to species if the problem is not solved quickly.  

NOAA logo NOAA logo.svg
NOAA logo

National Oceanic and Atmospheric Administration(NOAA)

The NOAA is the only laboratory in the United States for marine forensics

Northwest Fisheries Science Center (NWFSC)

Northwest Fisheries Science Center is a part the National Oceanic and Atmospheric Administration(NOAA) informally known as NOAA Fisheries. NWFSC also help NOAA Fisheries Office of Law Enforcement protect consumer interests. The agency also help to ensure that high consumer interest would not result in the rising of illegal activities such as food fraud. [12]

VIMS campus in Gloucester Point, Virginia VIMS Gloucester Point Campus.jpg
VIMS campus in Gloucester Point, Virginia

Virginia Institute of Marine Science (VIMS)

“VIMS provides research, education, and advisory service in marine science to Virginia, the nation, and the world.” The research team members of VIMS includes Laurie Sorenson(graduate student), Jan McDowell(molecular biologist), and John Graves(professor). [8]

Marine Accident Investigation Branch (MAIB)

Marine Accident Investigation Branch is an independent division of the United Kingdom's Department for Transport, Local Government and the Regions(DTLR). [21]

Office of the National Coordinator for Health Information Technology (ONC)

“ONC is the principal federal entity charged with coordination of nationwide efforts to implement and use the most advanced health information technology and the electronic exchange of health information. “

See also

Related Research Articles

<span class="mw-page-title-main">Forensic entomology</span> Application of insect and other arthropod biology to forensics

Forensic entomology is the scientific study of the colonization of a dead body by arthropods. This includes the study of insect types commonly associated with cadavers, their respective life cycles, their ecological presences in a given environment, as well as the changes in insect assemblage with the progression of decomposition. Insect succession patterns are identified based on the time a given species of insect spends in a given developmental stage, and how many generations have been produced since the insects introduction to a given food source. Insect development alongside environmental data such as temperature and vapor density, can be used to estimate the time since death, due to the fact that flying insects are attracted to a body immediately after death. The identification of postmortem interval to aid in death investigations is the primary scope of this scientific field. However, forensic entomology is not limited to homicides, it has also been used in cases of neglect and abuse, in toxicology contexts to detect the presence of drugs, and in dry shelf food contamination incidents. Equally, insect assemblages present on a body, can be used to approximate a given location, as certain insects may be unique to certain areas. Therefore, forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

<span class="mw-page-title-main">Decomposition</span> Process in which organic substances are broken down into simpler organic matter

Decomposition or rot is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Animals, such as worms, also help decompose the organic materials. Organisms that do this are known as decomposers or detritivores. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. The science which studies decomposition is generally referred to as taphonomy from the Greek word taphos, meaning tomb. Decomposition can also be a gradual process for organisms that have extended periods of dormancy.

Putrefaction is the fifth stage of death, following pallor mortis, algor mortis, rigor mortis, and livor mortis. This process references the breaking down of a body of an animal post-mortem. In broad terms, it can be viewed as the decomposition of proteins, and the eventual breakdown of the cohesiveness between tissues, and the liquefaction of most organs. This is caused by the decomposition of organic matter by bacterial or fungal digestion, which causes the release of gases that infiltrate the body's tissues, and leads to the deterioration of the tissues and organs. The approximate time it takes putrefaction to occur is dependent on various factors. Internal factors that affect the rate of putrefaction include the age at which death has occurred, the overall structure and condition of the body, the cause of death, and external injuries arising before or after death. External factors include environmental temperature, moisture and air exposure, clothing, burial factors, and light exposure.

<span class="mw-page-title-main">Forensic anthropology</span> Application of the science of anthropology in a legal setting

Forensic anthropology is the application of the anatomical science of anthropology and its various subfields, including forensic archaeology and forensic taphonomy, in a legal setting. A forensic anthropologist can assist in the identification of deceased individuals whose remains are decomposed, burned, mutilated or otherwise unrecognizable, as might happen in a plane crash. Forensic anthropologists are also instrumental in the investigation and documentation of genocide and mass graves. Along with forensic pathologists, forensic dentists, and homicide investigators, forensic anthropologists commonly testify in court as expert witnesses. Using physical markers present on a skeleton, a forensic anthropologist can potentially determine a person's age, sex, stature, and race. In addition to identifying physical characteristics of the individual, forensic anthropologists can use skeletal abnormalities to potentially determine cause of death, past trauma such as broken bones or medical procedures, as well as diseases such as bone cancer.

Coffin birth, also known as postmortem fetal extrusion, is the expulsion of a nonviable fetus through the vaginal opening of the decomposing body of a deceased pregnant woman due to increasing pressure from intra-abdominal gases. This kind of postmortem delivery occurs very rarely during the decomposition of a body. The practice of chemical preservation, whereby chemical preservatives and disinfectant solutions are pumped into a body to replace natural body fluids, have made the occurrence of "coffin birth" so rare that the topic is rarely mentioned in international medical discourse.

A body farm is a research facility where decomposition of humans and other animals can be studied in a variety of settings. The initial facility was conceived by anthropologist William M. Bass in 1981 at the University of Tennessee in Knoxville, Tennessee, where Bass was interested in studying the decomposition of a human corpse from the time of death to the time of decay. The aim was to gain a better understanding of the decomposition process, permitting the development of techniques for extracting information such as the timing and circumstances of death from human remains. Body farm research is of particular interest in forensic anthropology and related disciplines, and has applications in the fields of law enforcement and forensic science. By placing the bodies outside to face the elements, researchers are able to get a better understanding of the decomposition process.

<span class="mw-page-title-main">Post-mortem interval</span> Time that has elapsed since a person has died

The post-mortem interval (PMI) is the time that has elapsed since an individual's death. When the time of death is not known, the interval may be estimated, and so an approximate time of death established. Postmortem interval estimations can range from hours, to days or even years depending on the type of evidence present. There are standard medical and scientific techniques supporting such an estimation.

<span class="mw-page-title-main">National Marine Fisheries Service</span> Office of the U.S. National Oceanic and Atmospheric Administration

The National Marine Fisheries Service (NMFS), informally known as NOAA Fisheries, is a United States federal agency within the U.S. Department of Commerce's National Oceanic and Atmospheric Administration (NOAA) that is responsible for the stewardship of U.S. national marine resources. It conserves and manages fisheries to promote sustainability and prevent lost economic potential associated with overfishing, declining species, and degraded habitats.

<span class="mw-page-title-main">Forensic biology</span> Forensic application of the study of biology

Forensic biology is a branch of forensics where biology is applied to associate a person(s) — whether suspect or victim, to a location, an item, a person.

<span class="mw-page-title-main">Marine ecosystem</span> Ecosystem in saltwater environment

Marine ecosystems are the largest of Earth's aquatic ecosystems and exist in waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Seawater has an average salinity of 35 parts per thousand of water. Actual salinity varies among different marine ecosystems. Marine ecosystems can be divided into many zones depending upon water depth and shoreline features. The oceanic zone is the vast open part of the ocean where animals such as whales, sharks, and tuna live. The benthic zone consists of substrates below water where many invertebrates live. The intertidal zone is the area between high and low tides. Other near-shore (neritic) zones can include mudflats, seagrass meadows, mangroves, rocky intertidal systems, salt marshes, coral reefs, lagoons. In the deep water, hydrothermal vents may occur where chemosynthetic sulfur bacteria form the base of the food web.

The following outline is provided as an overview of and topical guide to forensic science:

<span class="mw-page-title-main">Skeletonization</span> Remains of an organism after soft tissues have broken down after death

Skeletonization is the state of a dead organism after undergoing decomposition. Skeletonization refers to the final stage of decomposition, during which the last vestiges of the soft tissues of a corpse or carcass have decayed or dried to the point that the skeleton is exposed. By the end of the skeletonization process, all soft tissue will have been eliminated, leaving only disarticulated bones.

Forensic entomological decomposition is how insects decompose and what that means for timing and information in criminal investigations. Medicolegal entomology is a branch of forensic entomology that applies the study of insects to criminal investigations, and is commonly used in death investigations for estimating the post-mortem interval (PMI). One method of obtaining this estimate uses the time and pattern of arthropod colonization. This method will provide an estimation of the period of insect activity, which may or may not correlate exactly with the time of death. While insect successional data may not provide as accurate an estimate during the early stages of decomposition as developmental data, it is applicable for later decompositional stages and can be accurate for periods up to a few years.

<span class="mw-page-title-main">Harmful algal bloom</span> Population explosion of organisms that can kill marine life

A harmful algal bloom (HAB) is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive. Harmful algal blooms in marine environments are often called "red tides".

<span class="mw-page-title-main">Ocean</span> Body of salt water covering the majority of Earth

The ocean is a body of salt water that covers approximately 70.8% of the Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the world ocean is conventionally divided. Distinct names are used to identify five different areas of the ocean: Pacific, Atlantic, Indian, Southern, and Arctic. Seawater covers approximately 361,000,000 km2 (139,000,000 sq mi) of the planet. The ocean is the primary component of the Earth's hydrosphere, and thus essential to life on Earth. The ocean influences climate and weather patterns, the carbon cycle, and the water cycle by acting as a huge heat reservoir.

<span class="mw-page-title-main">Effects of climate change on oceans</span> Overview of all the effects of climate change on oceans

Among the effects of climate change on oceans are an increase of ocean temperatures, more frequent marine heatwaves, ocean acidification, a rise in sea levels, sea ice decline, increased ocean stratification, reductions in oxygen levels, changes to ocean currents including a weakening of the Atlantic meridional overturning circulation. All these changes have knock-on effects which disturb marine ecosystems. The primary factor causing these changes is climate change due to human-caused emissions of greenhouse gases, such as carbon dioxide and methane. This leads inevitably to ocean warming, because the ocean is taking up most of the additional heat in the climate system. The ocean absorbs some of the extra carbon dioxide in the atmosphere and this causes the pH value of the ocean to drop. It is estimated that the ocean absorbs about 25% of all human-caused CO2 emissions.

<span class="mw-page-title-main">Forensic mycology</span>

Forensic mycology is the use of mycology in criminal investigations. Mycology is used in estimating times of death or events by using known growth rates of fungi, in providing trace evidence, and in locating corpses. It also includes tracking mold growth in buildings, the use of fungi in biological warfare, and the use of psychotropic and toxic fungus varieties as illicit drugs or causes of death.

The necrobiome has been defined as the community of species associated with decaying corpse remains. The process of decomposition is complex. Microbes decompose cadavers, but other organisms including fungi, nematodes, insects, and larger scavenger animals also contribute. Once the immune system is no longer active, microbes colonizing the intestines and lungs decompose their respective tissues and then travel throughout the body via the blood and lymphatic systems to break down other tissue and bone. During this process, gases are released as a by-product and accumulate, causing bloating. Eventually, the gases seep through the body's wounds and natural openings, providing a way for some microbes to exit from the inside of the cadaver and inhabit the outside. The microbial communities colonizing the internal organs of a cadaver are referred to as the thanatomicrobiome. The region outside of the cadaver that is exposed to the external environment is referred to as the epinecrotic portion of the necrobiome, and is especially important when determining the time and location of death for an individual. Different microbes play specific roles during each stage of the decomposition process. The microbes that will colonize the cadaver and the rate of their activity are determined by the cadaver itself and the cadaver's surrounding environmental conditions.

<span class="mw-page-title-main">Corpse decomposition</span> Process in which animal bodies break down

Decomposition is the process in which the organs and complex molecules of animal and human bodies break down into simple organic matter over time. In vertebrates, five stages of decomposition are typically recognized: fresh, bloat, active decay, advanced decay, and dry/skeletonized. Knowing the different stages of decomposition can help investigators in determining the Post Mortem Interval (PMI). The rate of decomposition of human remains can vary due to environmental factors and other factors. Environmental factors include temperature, burning, humidity, and the availability of oxygen. Other factors include body size, clothing, and the cause of death.

<span class="mw-page-title-main">Human impact on marine life</span>

Human activities affect marine life and marine habitats through overfishing, habitat loss, the introduction of invasive species, ocean pollution, ocean acidification and ocean warming. These impact marine ecosystems and food webs and may result in consequences as yet unrecognised for the biodiversity and continuation of marine life forms.

References

  1. Erskine, L. K., Armstrong, J. E. (2021) Water-Related Death Investigation: Practical Methods and Forensic Applications. CRC Press. https://doi-org.librweb.laurentian.ca/10.4324/9780367332297
  2. 1 2 3 US Department of Commerce, National Oceanic and Atmospheric Administration. "What is marine forensic science?". oceanservice.noaa.gov. Archived from the original on 2019-10-09. Retrieved 2019-10-09.
  3. 1 2 "The Importance of the Marine Mammal Protection Act of 1972 | National Marine Life Center". Archived from the original on 2019-10-11. Retrieved 2019-10-11.
  4. 1 2 Ellingham, S., Perich, P., Tidball-Binz, M. (2017). The fate of human remains in a maritime context and feasibility for forensic humanitarian action to assist in their recovery and identification. Forensic Science International. 279(1): 229-234. https://doi.org/10.1016/j.forsciint.2017.07.039
  5. "Marine Mammal Protection Act". Archived from the original on 2019-11-16.
  6. 1 2 "Isotopic tools for protecting the seas". Archived from the original on 2009-04-09. Retrieved 2019-10-09.
  7. 1 2 3 Erskine, L. K., Armstrong, J. E. (2021) Water-Related Death Investigation: Practical Methods and Forensic Applications. CRC Press. https://doi-org.librweb.laurentian.ca/10.4324/9780367332297
  8. 1 2 3 "Marine forensics: VIMS shows how genetic markers can help Feds enforce seafood regulations | William & Mary". www.wm.edu. Archived from the original on 2019-10-09. Retrieved 2019-10-09.
  9. US Department of Commerce, National Oceanic and Atmospheric Administration. "What is marine forensic science?". oceanservice.noaa.gov. Archived from the original on 2019-10-09. Retrieved 2019-10-09.
  10. Erskine, L. K., Armstrong, J. E. (2021) Water-Related Death Investigation: Practical Methods and Forensic Applications. CRC Press. https://doi-org.librweb.laurentian.ca/10.4324/9780367332297
  11. Byard, W, R. (2015). Immersion deaths and drowning: issues arising in the investigation of bodies recovered from water. Forensic Science, Medicine, and Pathology, 11(1), 323-325. https://doi.org/10.1007/s12024-014-9564-5
  12. 1 2 "Spotlight on Marine Forensic Science at the NWFSC". Archived from the original on 2019-11-01. Retrieved 2019-11-11.
  13. 1 2 3 4 Caruso, L. J. (2016). Decomposition Changes in Bodies Recovered from Water. Academic Forensic Pathology, 6(1), 19-27. 10.23907/2016.003
  14. 1 2 3 4 5 Erskine, L. K., Armstrong, J. E. (2021) Water-Related Death Investigation: Practical Methods and Forensic Applications. CRC Press. https://doi-org.librweb.laurentian.ca/10.4324/9780367332297
  15. Barone, Pier Matteo; Groen, W. J. Mike; Media, Springer Science+Business (2018). Multidisciplinary Approaches to Forensic Archaeology: Topics Discussed During the European Meetings on Forensic Archaeology (EMFA). Springer. ISBN   9783319943978. Archived from the original on 2022-05-08. Retrieved 2020-11-25.{{cite book}}: |first3= has generic name (help)
  16. Rothblum, Anita; Wheal, David; Withington, Stuart; Shappell, Scott; Wiegmann, Douglas; Boehm, William; Chaderjian, Marc (2002-01-01). "Improving Incident Investigation through Inclusion of Human Factors". United States Department of Transportation -- Publications & Papers. Archived from the original on 2019-10-09. Retrieved 2019-11-22.
  17. 1 2 Erskine, L. K., Armstrong, J. E. (2021) Water-Related Death Investigation: Practical Methods and Forensic Applications. CRC Press. https://doi-org.librweb.laurentian.ca/10.4324/9780367332297
  18. 1 2 Ellingham, S., Perich, P., Tidball-Binz, M. (2017). The fate of human remains in a maritime context and feasibility for forensic humanitarian action to assist in their recovery and identification. Forensic Science International. 279(1): 229-234. https://doi.org/10.1016/j.forsciint.2017.07.039
  19. 1 2 3 Lunetta, P., Ebbesmeyer, C., Molenaar, J. (2013). Behaviour of Dead Bodies in Water. In: Bierens, J. (eds), Drowning. Springer. https://doi-org.librweb.laurentian.ca/10.1007/978-3-642-04253-9_179
  20. 1 2 Byard, W, R. (2015). Immersion deaths and drowning: issues arising in the investigation of bodies recovered from water. Forensic Science, Medicine, and Pathology, 11(1), 323-325. https://doi.org/10.1007/s12024-014-9564-5
  21. "Marine Accident Investigation Branch". GOV.UK. Archived from the original on 2018-04-21. Retrieved 2019-10-09.