In mathematics, Maschke's theorem, [1] [2] named after Heinrich Maschke, [3] is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make general conclusions about representations of a finite group G without actually computing them. It reduces the task of classifying all representations to a more manageable task of classifying irreducible representations, since when the theorem applies, any representation is a direct sum of irreducible pieces (constituents). Moreover, it follows from the Jordan–Hölder theorem that, while the decomposition into a direct sum of irreducible subrepresentations may not be unique, the irreducible pieces have well-defined multiplicities. In particular, a representation of a finite group over a field of characteristic zero is determined up to isomorphism by its character.
Maschke's theorem addresses the question: when is a general (finite-dimensional) representation built from irreducible subrepresentations using the direct sum operation? This question (and its answer) are formulated differently for different perspectives on group representation theory.
Maschke's theorem is commonly formulated as a corollary to the following result:
Theorem — is a representation of a finite group over a field with characteristic not dividing the order of . If has a subrepresentation , then it has another subrepresentation such that . [4] [5]
Then the corollary is
Corollary (Maschke's theorem) — Every representation of a finite group over a field with characteristic not dividing the order of is a direct sum of irreducible representations. [6] [7]
The vector space of complex-valued class functions of a group has a natural -invariant inner product structure, described in the article Schur orthogonality relations. Maschke's theorem was originally proved for the case of representations over by constructing as the orthogonal complement of under this inner product.
One of the approaches to representations of finite groups is through module theory. Representations of a group are replaced by modules over its group algebra (to be precise, there is an isomorphism of categories between and , the category of representations of ). Irreducible representations correspond to simple modules. In the module-theoretic language, Maschke's theorem asks: is an arbitrary module semisimple? In this context, the theorem can be reformulated as follows:
Maschke's Theorem — Let be a finite group and a field whose characteristic does not divide the order of . Then , the group algebra of , is semisimple. [8] [9]
The importance of this result stems from the well developed theory of semisimple rings, in particular, their classification as given by the Wedderburn–Artin theorem. When is the field of complex numbers, this shows that the algebra is a product of several copies of complex matrix algebras, one for each irreducible representation. [10] If the field has characteristic zero, but is not algebraically closed, for example if is the field of real or rational numbers, then a somewhat more complicated statement holds: the group algebra is a product of matrix algebras over division rings over . The summands correspond to irreducible representations of over . [11]
Reformulated in the language of semi-simple categories, Maschke's theorem states
Maschke's theorem — If G is a group and F is a field with characteristic not dividing the order of G, then the category of representations of G over F is semi-simple.
Let U be a subspace of V complement of W. Let be the projection function, i.e., for any .
Define , where is an abbreviation of , with being the representation of G on W andV. Then, is preserved by G under representation : for any ,
so implies that . So the restriction of on is also a representation.
By the definition of , for any , , so , and for any , . Thus, , and . Therefore, .
Let V be a K[G]-submodule. We will prove that V is a direct summand. Let π be any K-linear projection of K[G] onto V. Consider the map
Then φ is again a projection: it is clearly K-linear, maps K[G] to V, and induces the identity on V (therefore, maps K[G] onto V). Moreover we have
so φ is in fact K[G]-linear. By the splitting lemma, . This proves that every submodule is a direct summand, that is, K[G] is semisimple.
The above proof depends on the fact that #G is invertible in K. This might lead one to ask if the converse of Maschke's theorem also holds: if the characteristic of K divides the order of G, does it follow that K[G] is not semisimple? The answer is yes. [12]
Proof. For define . Let . Then I is a K[G]-submodule. We will prove that for every nontrivial submodule V of K[G], . Let V be given, and let be any nonzero element of V. If , the claim is immediate. Otherwise, let . Then so and
so that is a nonzero element of both I and V. This proves V is not a direct complement of I for all V, so K[G] is not semisimple.
The theorem can not apply to the case where G is infinite, or when the field K has characteristics dividing #G. For example,
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself ; in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication.
In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.
In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of .
In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.
In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.
In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.
Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.
In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.
In mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.
This is a glossary of representation theory in mathematics.
In mathematics, specifically in representation theory, a semisimple representation is a linear representation of a group or an algebra that is a direct sum of simple representations. It is an example of the general mathematical notion of semisimplicity.
In mathematics, the finite-dimensional representations of the complex classical Lie groups , , , , , can be constructed using the general representation theory of semisimple Lie algebras. The groups , , are indeed simple Lie groups, and their finite-dimensional representations coincide with those of their maximal compact subgroups, respectively , , . In the classification of simple Lie algebras, the corresponding algebras are