McIntosh and Fildes' anaerobic jar

Last updated
McIntosh and Fildes' anaerobic jar
McIntosh and Fildes' Anaerobic Jar.jpg
UsesProduction of an anaerobic environment
InventorPaul Fildes and James McIntosh

McIntosh and Fildes' anaerobic jar is an instrument used in the production of an anaerobic environment. This method of anaerobiosis as others is used to culture bacteria which die or fail to grow in presence of oxygen ( anaerobes ). [1] [2] It was originally introduced by James McIntosh, Paul Fildes and William Bulloch in 1916. [3] McIntosh and Fildes, after whom the device has been named, published an improved version in 1921. [4]

Contents

Construction

The jar, about 20×12.5 is made up of a metal. Its parts are as follows:

  1. The body made up of metal (airtight)
  2. The lid, also metal can be placed in an airtight fashion
  3. A screw going through a curved metal strip to secure and hold the lid in place
  4. A thermometer to measuring the internal temperature
  5. A pressure gauge to measuring the internal pressure (or a side tube is attached to a manometer)
  6. Another side tube for evacuation and introduction of gases (to a gas cylinder or a vacuum pump)
  7. A wire cage hanging from the lid to hold a catalyst that makes hydrogen react to oxygen without the need of any ignition source

Method of use

  1. The culture: The culture media are placed inside the jar, stacked up one on the other, and
  2. Indicator system: Pseudomonas aeruginosa , inoculated on to a nutrient agar plate is kept inside the jar along with the other plates. This bacteria need oxygen to grow ( aerobic ). A growth free culture plate at the end of the process indicates a successful anaerobiosis. However, P. aeruginosa possesses a denitrification pathway. If nitrate is present in the media, P. aeruginosa may still grow under anaerobic conditions.

Related Research Articles

<span class="mw-page-title-main">Obligate aerobe</span>

An obligate aerobe is an organism that requires oxygen to grow. Through cellular respiration, these organisms use oxygen to metabolise substances, like sugars or fats, to obtain energy. In this type of respiration, oxygen serves as the terminal electron acceptor for the electron transport chain. Aerobic respiration has the advantage of yielding more energy than fermentation or anaerobic respiration, but obligate aerobes are subject to high levels of oxidative stress.

An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for growth. It may react negatively or even die if free oxygen is present. In contrast, an aerobic organism (aerobe) is an organism that requires an oxygenated environment. Anaerobes may be unicellular or multicellular. Most fungi are obligate aerobes, requiring oxygen to survive. However, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen will disrupt their metabolism or kill them. Deep waters of the ocean are a common anoxic environment.

Primary nutritional groups are groups of organisms, divided in relation to the nutrition mode according to the sources of energy and carbon, needed for living, growth and reproduction. The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin.

<span class="mw-page-title-main">Hydrogen sulfide</span> Poisonous, corrosive and flammable gas

Hydrogen sulfide is a chemical compound with the formula H
2
S
. It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The underground mine gas term for foul-smelling hydrogen sulfide-rich gas mixtures is stinkdamp. Swedish chemist Carl Wilhelm Scheele is credited with having discovered the chemical composition of purified hydrogen sulfide in 1777. The British English spelling of this compound is hydrogen sulphide, a spelling no longer recommended by the Royal Society of Chemistry or the International Union of Pure and Applied Chemistry.

<span class="mw-page-title-main">Blood culture</span> Test to detect bloodstream infections

A blood culture is a medical laboratory test used to detect bacteria or fungi in a person's blood. Under normal conditions, the blood does not contain microorganisms: their presence can indicate a bloodstream infection such as bacteremia or fungemia, which in severe cases may result in sepsis. By culturing the blood, microbes can be identified and tested for resistance to antimicrobial drugs, which allows clinicians to provide an effective treatment.

<span class="mw-page-title-main">Sulfate-reducing microorganism</span> Microorganisms which "breathe" sulfates

Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate (SO2−
4
) as terminal electron acceptor, reducing it to hydrogen sulfide (H2S). Therefore, these sulfidogenic microorganisms "breathe" sulfate rather than molecular oxygen (O2), which is the terminal electron acceptor reduced to water (H2O) in aerobic respiration.

<span class="mw-page-title-main">Oxygen scavenger</span> Substance able to chemically absorb oxygen in the surrounding air

Oxygen scavengers or oxygen absorbers are added to enclosed packaging to help remove or decrease the level of oxygen in the package. They are used to help maintain product safety and extend shelf life. There are many types of oxygen absorbers available to cover a wide array of applications.

<span class="mw-page-title-main">Microaerophile</span>

A microaerophile is a microorganism that requires environments containing lower levels of dioxygen than that are present in the atmosphere (i.e. < 21% O2; typically 2–10% O2) for optimal growth. A more restrictive interpretation requires the microorganism to be obligate in this requirement. Many microaerophiles are also capnophiles, requiring an elevated concentration of carbon dioxide (e.g. 10% CO2 in the case of Campylobacter species).

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes.

<span class="mw-page-title-main">Gas gangrene</span> Human bacterial infection

Gas gangrene is a bacterial infection that produces tissue gas in gangrene. This deadly form of gangrene usually is caused by Clostridium perfringens bacteria. About 1,000 cases of gas gangrene are reported yearly in the United States.

Microbial corrosion, also called microbiologically influenced corrosion (MIC), microbially induced corrosion (MIC) or biocorrosion, is "corrosion affected by the presence or activity of microorganisms in biofilms on the surface of the corroding material." This corroding material can be either a metal or a nonmetal.

<i>Beggiatoa</i> Genus of bacteria

Beggiatoa is a genus of Gammaproteobacteria belonging to the order Thiotrichales, in the Pseudomonadota phylum. This genus was one of the first bacteria discovered by Ukrainian botanist Sergei Winogradsky. During his research in Anton de Bary's laboratory of botany in 1887, he found that Beggiatoa oxidized hydrogen sulfide (H2S) as an energy source, forming intracellular sulfur droplets, oxygen is the terminal electron acceptor and CO2 is used as a carbon source. Winogradsky named it in honor of the Italian doctor and botanist Francesco Secondo Beggiato (1806 - 1883), from Venice. Winogradsky referred to this form of metabolism as "inorgoxidation" (oxidation of inorganic compounds), today called chemolithotrophy. These organisms live in sulfur-rich environments such as soil, both marine and freshwater, in the deep sea hydrothermal vents and in polluted marine environments. The finding represented the first discovery of lithotrophy. Two species of Beggiatoa have been formally described: the type species Beggiatoa alba and Beggiatoa leptomitoformis, the latter of which was only published in 2017. This colorless and filamentous bacterium, sometimes in association with other sulfur bacteria (for example the genus Thiothrix), can be arranged in biofilm visible to the naked eye formed by a very long white filamentous mat, the white color is due to the stored sulfur. Species of Beggiatoa have cells up to 200 µm in diameter and they are one of the largest prokaryotes on Earth.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

In biology, syntrophy, synthrophy, or cross-feeding is the phenomenon of one species feeding on the metabolic products of another species to cope up with the energy limitations by electron transfer. In this type of biological interaction, metabolite transfer happens between two or more metabolically diverse microbial species that live in close proximity to each other. The growth of one partner depends on the nutrients, growth factors, or substrates provided by the other partner. Thus, syntrophism can be considered as an obligatory interdependency and a mutualistic metabolism between two different bacterial species.

<span class="mw-page-title-main">Frederick Twort</span> English bacteriologist

Frederick William Twort FRS was an English bacteriologist and was the original discoverer in 1915 of bacteriophages. He studied medicine at St Thomas's Hospital, London, was superintendent of the Brown Institute for Animals, and was a professor of bacteriology at the University of London. He researched into Johne's disease, a chronic intestinal infection of cattle, and also discovered that vitamin K is needed by growing leprosy bacteria.

<span class="mw-page-title-main">Vacuum packing</span> Method of removing air from package prior to sealing

Vacuum packing is a method of packaging that removes air from the package prior to sealing. This method involves placing items in a plastic film package, removing air from inside and sealing the package. Shrink film is sometimes used to have a tight fit to the contents. The intent of vacuum packing is usually to remove oxygen from the container to extend the shelf life of foods and, with flexible package forms, to reduce the volume of the contents and package.

Biogenic sulfide corrosion is a bacterially mediated process of forming hydrogen sulfide gas and the subsequent conversion to sulfuric acid that attacks concrete and steel within wastewater environments. The hydrogen sulfide gas is biochemically oxidized in the presence of moisture to form sulfuric acid. The effect of sulfuric acid on concrete and steel surfaces exposed to severe wastewater environments can be devastating. In the USA alone, corrosion is causing sewer asset losses estimated at around $14 billion per year. This cost is expected to increase as the aging infrastructure continues to fail.

Klebsiella aerogenes, previously known as Enterobacter aerogenes, is a Gram-negative, oxidase negative, catalase positive, citrate positive, indole negative, rod-shaped bacterium. The bacterium is approximately 1–3 microns in length, and is capable of motility via peritrichous flagella.

<span class="mw-page-title-main">Gas-pak</span>

Gas-pak is a method used in the production of an anaerobic environment. It is used to culture bacteria which die or fail to grow in the presence of oxygen (anaerobes).

In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century.

References

  1. Textbook of Microbiology by Prof. C P Baveja, ISBN   81-7855-266-3
  2. Textbook of Microbiology by Ananthanarayan and Panikar, ISBN   81-250-2808-0
  3. Mcintosh, James; Fildes, Paul; Bulloch, William (1916). "A new apparatus for the isolation ans cultivation of anaerobic microorganisms". The Lancet. 187 (4832): 768–770. doi:10.1016/s0140-6736(01)11835-0. ISSN   0140-6736.
  4. McIntosh, John; Fildes, Paul (31 March 1921). "An Improved Form of McIntosh and Fildes' Anaërobic Jar" (PDF). British Journal of Experimental Pathology. 2 (3): 153–154.