Method of images

Last updated

The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is made to satisfy boundary conditions by placing additional singularities outside the domain of interest. Typically the locations of these additional singularities are determined as the virtual location of the original singularities as viewed in a mirror placed at the location of the boundary conditions. Most typically, the mirror is a hyperplane or hypersphere.

Contents

The method of images can also be used in solving discrete problems with boundary conditions, such counting the number of restricted discrete random walks.

Method of image charges

The field of a positive charge above a flat conducting surface, found by the method of images. VFPt imagecharge plane horizontal plusminus.svg
The field of a positive charge above a flat conducting surface, found by the method of images.

The method of image charges is used in electrostatics to simply calculate or visualize the distribution of the electric field of a charge in the vicinity of a conducting surface. It is based on the fact that the tangential component of the electrical field on the surface of a conductor is zero, and that an electric field E in some region is uniquely defined by its normal component over the surface that confines this region (the uniqueness theorem). [1]

Magnet-superconductor systems

A magnetic dipole over the superconducting surface. The field between the magnet and surface is the same as between this magnet and a symmetric one. Mirror magnets.png
A magnetic dipole over the superconducting surface. The field between the magnet and surface is the same as between this magnet and a symmetric one.

The method of images may also be used in magnetostatics for calculating the magnetic field of a magnet that is close to a superconducting surface. The superconductor in so-called Meissner state is an ideal diamagnet into which the magnetic field does not penetrate. Therefore, the normal component of the magnetic field on its surface should be zero. Then the image of the magnet should be mirrored. The force between the magnet and the superconducting surface is therefore repulsive.

Comparing to the case of the charge dipole above a flat conducting surface, the mirrored magnetization vector can be thought as due to an additional sign change of an axial vector.

In order to take into account the magnetic flux pinning phenomenon in type-II superconductors, the frozen mirror image method can be used. [2]

Mass transport in environmental flows with non-infinite domains

Environmental engineers are often interested in the reflection (and sometimes the absorption) of a contaminant plume off of an impenetrable (no-flux) boundary. A quick way to model this reflection is with the method of images.

The reflections, or images, are oriented in space such that they perfectly replace any mass (from the real plume) passing through a given boundary. [3] A single boundary will necessitate a single image. Two or more boundaries produce infinite images. However, for the purposes of modeling mass transport—such as the spread of a contaminant spill in a lake—it may be unnecessary to include an infinite set of images when there are multiple relevant boundaries. For example, to represent the reflection within a certain threshold of physical accuracy, one might choose to include only the primary and secondary images.

The simplest case is a single boundary in 1-dimensional space. In this case, only one image is possible. If as time elapses, a mass approaches the boundary, then an image can appropriately describe the reflection of that mass back across the boundary.

At some time (t1) a mass has an approximate Gaussian distribution to the right of the impenetrable boundary in 1D space. At a later time (t2) the mass has diffused "through" the boundary, and the mass lost through the boundary is reflected back across the boundary by the primary image. Note that the center of mass does not change with time, since there is no advection, only diffusion. The vertical axis is expected concentration (of the contaminant), the horizontal axis is the x-direction. 1D single boundary.png
At some time (t1) a mass has an approximate Gaussian distribution to the right of the impenetrable boundary in 1D space. At a later time (t2) the mass has diffused "through" the boundary, and the mass lost through the boundary is reflected back across the boundary by the primary image. Note that the center of mass does not change with time, since there is no advection, only diffusion. The vertical axis is expected concentration (of the contaminant), the horizontal axis is the x-direction.

Another simple example is a single boundary in 2-dimensional space. Again, since there is only a single boundary, only one image is necessary. This describes a smokestack, whose effluent "reflects" in the atmosphere off of the impenetrable ground, and is otherwise approximately unbounded.

This is a picture of a contaminant plume being emitted from a smokestack in 2-dimensional space. The smokestack and its plume are reflected across the x-axis, to account for the mass of the contaminant that bounces and (perfectly) reflects off of the boundary (the ground). Any mass that is lost from the original plume is replaced by the image. The vertical axis is the z-direction, the horizontal axis is the x-direction. Method of images 2D.png
This is a picture of a contaminant plume being emitted from a smokestack in 2-dimensional space. The smokestack and its plume are reflected across the x-axis, to account for the mass of the contaminant that bounces and (perfectly) reflects off of the boundary (the ground). Any mass that is lost from the original plume is replaced by the image. The vertical axis is the z-direction, the horizontal axis is the x-direction.

Finally, we consider a mass release in 1-dimensional space bounded to its left and right by impenetrable boundaries. There are two primary images, each replacing the mass of the original release reflecting through each boundary. There are two secondary images, each replacing the mass of one of the primary images flowing through the opposite boundary. There are also two tertiary images (replacing the mass lost by the secondary images), two quaternary images (replacing the mass lost by the tertiary images), and so on ad infinitum.

Mass release with two impenetrable boundaries in 1-dimensional space. The vertical axis is expected concentration (of the contaminant), the horizontal axis is the x-direction. 1D double boundary.png
Mass release with two impenetrable boundaries in 1-dimensional space. The vertical axis is expected concentration (of the contaminant), the horizontal axis is the x-direction.

For a given system, once all of the images are carefully oriented, the concentration field is given by summing the mass releases (the true plume in addition to all of the images) within the specified boundaries. This concentration field is only physically accurate within the boundaries; the field outside the boundaries is non-physical and irrelevant for most engineering purposes.

Mathematics for continuous cases

This method is a specific application of Green's functions.[ citation needed ] The method of images works well when the boundary is a flat surface and the distribution has a geometric center. This allows for simple mirror-like reflection of the distribution to satisfy a variety of boundary conditions. Consider the simple 1D case illustrated in the graphic where there is a distribution of as a function of and a single boundary located at with the real domain such that and the image domain . Consider the solution to satisfy the linear differential equation for any , but not necessarily the boundary condition.

Note these distributions are typical in models that assume a Gaussian distribution. This is particularly common in environmental engineering, especially in atmospheric flows that use Gaussian plume models.

Perfectly reflecting boundary conditions

The mathematical statement of a perfectly reflecting boundary condition is as follows:

This states that the derivative of our scalar function will have no derivative in the normal direction to a wall. In the 1D case, this simplifies to:

This condition is enforced with positive images so that:[ citation needed ]

where the translates and reflects the image into place. Taking the derivative with respect to :

Thus, the perfectly reflecting boundary condition is satisfied.

Perfectly absorbing boundary conditions

The statement of a perfectly absorbing boundary condition is as follows:[ citation needed ]

This condition is enforced using a negative mirror image:

And:

Thus this boundary condition is also satisfied.

Mathematics for discrete cases

The method of images can be used in discrete cases. For example, the number of random walks that start at position 0, take steps of size ±1, continue for a total of n steps, and end at position k is given by the binomial coefficient assuming that |k|n and n + k is even. Suppose we have the boundary condition that walks are prohibited from stepping to −1 during any part of the walk. The number of restricted walks can be calculated by starting with the number of unrestricted walks that start at position 0 and end at position k and subtracting the number of unrestricted walks that start at position −2 and end at position k. This is because, for any given number of steps, exactly as many unrestricted positively weighted walks as unrestricted negatively weighted walks will reach −1; they are mirror images of each other. As such, these negatively weighted walks cancel out precisely those positively weighted walks that our boundary condition has prohibited.

For example, if the number of steps is n = 2m and the final location is k = 0 then the number of restricted walks is the Catalan number

Related Research Articles

<span class="mw-page-title-main">Diamagnetism</span> Magnetic property of ordinary materials

Diamagnetism is the property of materials that are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted by a magnetic field. Diamagnetism is a quantum mechanical effect that occurs in all materials; when it is the only contribution to the magnetism, the material is called diamagnetic. In paramagnetic and ferromagnetic substances, the weak diamagnetic force is overcome by the attractive force of magnetic dipoles in the material. The magnetic permeability of diamagnetic materials is less than the permeability of vacuum, μ0. In most materials, diamagnetism is a weak effect which can be detected only by sensitive laboratory instruments, but a superconductor acts as a strong diamagnet because it entirely expels any magnetic field from its interior.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force, with that of the total potential energy of the system. Mathematically, the theorem states

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

The beam diameter or beam width of an electromagnetic beam is the diameter along any specified line that is perpendicular to the beam axis and intersects it. Since beams typically do not have sharp edges, the diameter can be defined in many different ways. Five definitions of the beam width are in common use: D4σ, 10/90 or 20/80 knife-edge, 1/e2, FWHM, and D86. The beam width can be measured in units of length at a particular plane perpendicular to the beam axis, but it can also refer to the angular width, which is the angle subtended by the beam at the source. The angular width is also called the beam divergence.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

<span class="mw-page-title-main">Eigenfunction</span> Mathematical function of a linear operator

In mathematics, an eigenfunction of a linear operator D defined on some function space is any non-zero function in that space that, when acted upon by D, is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as

A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis, and are closely related to the concept of a measure. Weight functions can be employed in both discrete and continuous settings. They can be used to construct systems of calculus called "weighted calculus" and "meta-calculus".

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Solid of revolution</span> Type of three-dimensional shape

In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line, which may not intersect the generatrix. The surface created by this revolution and which bounds the solid is the surface of revolution.

<span class="mw-page-title-main">Surface of revolution</span> Surface created by rotating a curve about an axis

A surface of revolution is a surface in Euclidean space created by rotating a curve one full revolution around an axis of rotation . The volume bounded by the surface created by this revolution is the solid of revolution.

In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenological model which could describe type-I superconductors without examining their microscopic properties. One GL-type superconductor is the famous YBCO, and generally all cuprates.

Pseudo-spectral methods, also known as discrete variable representation (DVR) methods, are a class of numerical methods used in applied mathematics and scientific computing for the solution of partial differential equations. They are closely related to spectral methods, but complement the basis by an additional pseudo-spectral basis, which allows representation of functions on a quadrature grid. This simplifies the evaluation of certain operators, and can considerably speed up the calculation when using fast algorithms such as the fast Fourier transform.

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:

In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases.

In physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector.

Singularity functions are a class of discontinuous functions that contain singularities, i.e., they are discontinuous at their singular points. Singularity functions have been heavily studied in the field of mathematics under the alternative names of generalized functions and distribution theory. The functions are notated with brackets, as where n is an integer. The "" are often referred to as singularity brackets. The functions are defined as:

The Bennett acceptance ratio method (BAR) is an algorithm for estimating the difference in free energy between two systems . It was suggested by Charles H. Bennett in 1976.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

References

    • J. D. Jackson (1998). Classical Electrodynamics (3rd ed.). John Wiley & Sons. ISBN   978-0-471-30932-1.
  1. Kordyuk, A. A. (1998). "Magnetic levitation for hard superconductors" (PDF). Journal of Applied Physics . 83 (1): 610–611. Bibcode:1998JAP....83..610K. doi:10.1063/1.366648.
  2. "3.8 - Method of Images".