Microchimerism is the presence of a small number of cells in an individual that have originated from another individual and are therefore genetically distinct. This phenomenon may be related to certain types of autoimmune diseases although the responsible mechanisms are unclear. The term comes from the prefix "micro" + "chimerism" based on the hybrid Chimera of Greek mythology. The concept was first discovered in the 1960s with the term gaining usage in the 1970s. [1]
In humans (and perhaps in all placental mammals), the most common form is fetomaternal microchimerism (also known as fetal cell microchimerism or fetal chimerism) whereby cells from a fetus pass through the placenta and establish cell lineages within the mother. Fetal cells have been documented to persist and multiply in the mother for several decades. [2] [3] The exact phenotype of these cells is unknown, although several different cell types have been identified, such as various immune lineages, mesenchymal stem cells, and placental-derived cells. [4] A 2012 study at the Fred Hutchinson Cancer Research Center, Seattle, has detected cells with the Y chromosome in multiple areas of the brains of deceased women. [5]
Fetomaternal microchimerism occurs during pregnancy and shortly after giving birth for most women. However, not all women who have had children contain fetal cells. Studies suggest that fetomaternal microchimerism could be influenced by killer-cell immunoglobulin-like (KIR) ligands. [6] Lymphocytes also influence the development of persisting fetomaternal microchimerism since natural killer cells compose about 70% of lymphocytes in the first trimester of pregnancy. KIR patterns on maternal natural killer cells of the mother and KIR ligands on the fetal cells could have an effect on fetomaternal microchimerism. In one study, mothers with KIR2DS1 exhibited higher levels of fetomaternal microchimerism compared to mothers who were negative for this activating KIR. [6]
The potential health consequences of these cells are unknown. One hypothesis is that these fetal cells might trigger a graft-versus-host reaction leading to autoimmune disease. This offers a potential explanation for why many autoimmune diseases are more prevalent in middle-aged women. [7] Another hypothesis is that fetal cells home to injured or diseased maternal tissue where they act as stem cells and participate in repair. [8] [9] It is also possible that the fetal cells are merely innocent bystanders and have no effect on maternal health. [10]
After giving birth, about 50–75% of women carry fetal immune cell lines. Maternal immune cells are also found in the offspring yielding in maternal→fetal microchimerism, though this phenomenon is about half as frequent as the former. [11]
Microchimerism had also been shown to exist after blood transfusions to a severely immunocompromised population of patients who suffered trauma. [12]
Other possible sources of microchimerism include gestation, [13] an individual's older sibling, twin sibling, or vanished twin, with the cells being received in utero. Fetal-maternal microchimerism is especially prevalent after abortion or miscarriage. [14]
Microchimerism occurs in most pairs of twins in cattle. In cattle (and other bovines), the placentas of fraternal twins usually fuse and the twins share blood circulation, resulting in exchange of cell lines. If the twins are a male–female pair, then XX/XY microchimerism results, and male hormones partially masculinize the heifer (female), creating a martin heifer or freemartin . Freemartins appear female, but are infertile and so cannot be used for breeding or dairy production. Microchimerism provides a method of diagnosing the condition, because male genetic material can be detected in a blood sample. [15]
Several studies have identified male DNA in the brains of both humans and mice who have previously been pregnant with a male fetus. [16] [17] It has been suggested that the fetal-derived cells can differentiate into those capable of presenting neurotypical immunomarkers on their surface. [16] There has been no strong evidence to say microchimerism of the maternal brain leads to disease; however, Parkinson's disease correlates with a higher incidence of brain microchimeras. [16] Alzheimer's disease studies support nearly the opposite correlation: the more fetal-derived cells present, the lower the chance of the patient having had Alzheimer's. [17]
There are many mechanisms at the maternal-fetal interface to prevent immune rejection of fetal cells. Nevertheless, systemic immunological changes occur in pregnant women. For example, condition of women suffering from autoimmune disorders (e.g. rheumatoid arthritis, multiple sclerosis) improves during pregnancy. [18] [19] These changes in immune responses during pregnancy extend to maternal components specific to fetal antigens, because of feto-maternal cell transfer and their retention in mother tissues. During pregnancy, numbers of fetal cells in maternal tissues increase and correlate with expansion of CD4+ regulatory T cells (Tregs). [20] Decreased expansion and decidual accumulation of Treg cause pregnancy complications (preeclampsia, abortions). [20] In mice models, most mother's fetal-specific CD8+ T cells undergo clonal deletion [21] and express low levels of chemokine receptors and ligands – this prevents remaining fetal-specific CD8+ T cells from entering the maternal-fetal interface. [22] [23] Mother's fetal-specific CD4+ T cells proliferate, and due to FOXP3 expression, differentiate into Treg cells. [24] Mice models show that fetal-specific Treg cells are necessary for successful pregnancy. [25]
Fetal T cells accumulate during in utero development. Even though the fetus is exposed to noninherited maternal antigens (NIMAs), fetal CD4+ T cells are capable of alloantigen-induced proliferation, preferentially differentiating to Treg cells and preventing a fetal immune response to maternal antigens. [26] This expanded immune tolerance persists in both mother and offspring after birth and allows microchimeric cells to be retained in tissues.
NIMA-specific tolerance causes some interesting immunological phenotypes: sensitization to erythrocyte Rhesus factor (Rh) antigens is reduced among Rh- women born to Rh+ women, [27] long-term kidney allograft survival is improved in NIMA-matched donor-recipient sibling pairs, [28] or acuteness of bone marrow transplantation graft-versus-host disease is reduced, when recipients of donor stem cells are NIMA-matched. [29] Cross-fostering animal studies show that when postnatal NIMA exposure though breastfeeding is eliminated, survival of NIMA-matched allografts is reduced. This suggests that to maintain NIMA-specific tolerance in offspring, breastfeeding is essential, but ingestion of mother's cells alone does not prime NIMA-specific tolerance. Both prenatal and postnatal exposure to mother's cells is required to maintain NIMA-specific tolerance. [30]
The severity of preexisting autoimmune disorders is reduced during pregnancy and it is most apparent when fetal microchimeric cells levels are highest - during the last trimester. [31] [19] These cells can also replace injured maternal cells and recover tissue function (type I diabetes mouse model showed replacement of defective maternal islet cells by fetal-derived pancreatic cells [32] ). Fetal microchimeric cells can differentiate into cell types that infiltrate and replace injured cells in models of Parkinson's disease or myocardial infarction. They also help in wound healing by neoangiogenesis. Seeding of fetal microchimeric cells into maternal tissues has been proposed to promote care of offspring after birth (seeding of maternal breast tissue may promote lactation, and seeding of brain may enhance maternal attention). [30]
Microchimerism has been implicated in autoimmune diseases. Independent studies repeatedly suggested that microchimeric cells of fetal origin may be involved in the pathogenesis of systemic sclerosis. [3] [33] Moreover, microchimeric cells of maternal origin may be involved in the pathogenesis of a group of autoimmune diseases found in children, i.e. juvenile idiopathic inflammatory myopathies (one example would be juvenile dermatomyositis). [34] Microchimerism has now been further implicated in other autoimmune diseases, including systemic lupus erythematosus. [35] Contrarily, an alternative hypothesis on the role of microchimeric cells in lesions is that they may be facilitating tissue repair of the damaged organ. [36]
Moreover, fetal immune cells have also been frequently found in breast cancer stroma as compared to samples taken from healthy women. It is not clear, however, whether fetal cell lines promote the development of tumors or, contrarily, protect women from developing breast carcinoma. [37] [38]
The presence of fetal cells in mothers can be associated with benefits when it comes to certain autoimmune diseases. In particular, male fetal cells are related to helping mothers with systemic lupus erythematosus. When kidney biopsies were taken from patients with lupus nephritis, DNA was extracted and run with PCR. The male fetal DNA was quantified and the presence of specific Y chromosome sequences were found. Women with lupus nephritis containing male fetal cells in their kidney biopsies exhibited better renal system functioning. Levels of serum creatinine, which is related to kidney failure, were low in mothers with high levels of male fetal cells. [39] In contrast, women without male fetal cells who had lupus nephritis showed a more serious form of glomerulonephritis and higher levels of serum creatinine. [39]
The specific role that fetal cells play in microchimerism related to certain autoimmune diseases is not fully understood. However, one hypothesis states that these cells supply antigens, causing inflammation and triggering the release of different foreign antigens. [39] This would trigger autoimmune disease instead of serving as a therapeutic. A different hypothesis states that fetal microchimeric cells are involved in repairing tissues. When tissues get inflamed, fetal microchimeric cells go to the damaged site and aid in repair and regeneration of the tissue. [39]
Fetal maternal microchimerism may be related to autoimmune thyroid diseases. There have been reports of fetal cells in the lining of the blood and thyroid glands of patients with autoimmune thyroid disease. These cells could become activated after delivery of the baby after immune suppression in the mother is lost, suggesting a role of fetal cells in the pathogenesis of such diseases. [40] Two types of thyroid disease, Hashimoto's thyroiditis (HT) and Graves' disease (GD), show similarities to graft vs host disease which occurs after hematopoietic stem cell transplants. Fetal cells colonize maternal tissues like the thyroid gland and are able to survive many years postpartum. These fetal microchimeric cells in the thyroid show up in the blood of women affected by thyroid diseases. [40]
Sjögren syndrome (SS) is an autoimmune rheumatic disease of the exocrine glands. Increased incidence of SS after childbirth suggests a relationship between SS and pregnancy, and this led to the hypothesis that fetal microchimerism may be involved in SS pathogenesis. Studies showed the presence of Y-chromosome-positive fetal cells in minor salivary glands in 11 of 20 women with SS but in only one of eight normal controls. Fetal cells in salivary glands suggest that they may be involved in the development of SS. [41]
Lichen planus (LP) is a T-cell-mediated autoimmune chronic disease of unknown etiology. Females have a three times higher prevalence than men. LP is characterized by T lymphocytes infiltration of the lower levels of epithelium, where they damage basal cells and cause apoptosis. The fetal microchimerism may trigger a fetus versus host reaction and therefore may play a role in the pathogenesis of autoimmune diseases including LP. [42]
Pregnancy has a positive effect on the prognosis of breast cancer according to several studies [43] [44] [45] and it apparently increases the chance of survival after diagnosis of breast cancer. [46] Possible positive effects of pregnancy could be explained by the persistence of fetal cells in the blood and maternal tissues. [2]
Fetal cells are probably actively migrating from peripheral blood into the tumor tissue [47] where they are preferentially settled in the tumor stroma [38] and one their concentration decreases as they get closer to the healthy breast tissue. [48] There are two suggested mechanisms by which the fetal cells could have the positive effect on the breast cancer prognosis. The first mechanism suggests that fetal cells only oversee cancer cells and they attract components of the immune system if needed. The second option is that the down-regulation of the immune system induced by the presence of fetal cells could ultimately lead to cancer prevention, because women in whom FMC is present produce lower concentrations of inflammatory mediators, which may lead to the development of neoplastic tissue. [49]
The effect also depends on the level of microchimerism: Hyperchimerism (a high rate of microchimerism) and hypochimerism (a low rate of microchimerism) can be related to the negative effect of FMC and thus can promote a worse prognosis of breast cancer. [50] [51] Apparently, women with breast cancer may fail in the process of obtaining and maintaining allogeneic fetal cells. Low concentration and / or complete absence of fetal cells could indicate a predisposition to development of the malignant process.
Study of S. Hallum shows association between male origin fetal cells and ovarian cancer risk. Presence of Y chromosome was used to detect foreign cells in women's blood. Microchimerism is a result of pregnancy, possibility that foreign cells were of transfusion or transplantation origin was rejected due to women's health. Women testing positive for male origin microchimerism cells had reduced hazard rates of ovarian cancer than women testing negative. [52] Pregnancy at older ages can reduce risk of ovarian cancer. Numbers of microchimeric cells declines after pregnancy, and ovarian cancer is most frequent in postmenopausal women. This suggests that fetal microchimerism may play a protective role in ovarian cancer as well. Microchimeric cells also cluster several times more in lung tumors than in surrounding healthy lung tissue. Fetal cells from the bone marrow go to the tumor sites where they may have tissue repair functions. [53] Microchimerism of fetomaternal cell trafficking origin might be associated with the pathogenesis or progression of cervical cancer. Male cells were observed in patients with cervical cancer but not in positive controls. Microchimeric cells might induce the alteration of the woman's immune system and make the cervical tissue more susceptible to HPV infection or provide a suitable environment for tumor growth. [54]
Microchimeric fetal cells expressed collagen I, III and TGF-β3, and they were identified in healed maternal cesarean section scars. This suggests that these cells migrate to the site of damage due to maternal skin injury signals, and help repair tissue. [55]
Fetomaternal microchimerism has been shown in experimental investigations of whether fetal cells can cross the blood brain barrier in mice. The properties of these cells allow them to cross the blood brain barrier and target injured brain tissue. [56] This mechanism is possible because umbilical cord blood cells express some proteins similar to neurons. When these umbilical cord blood cells are injected in rats with brain injury or stroke, they enter the brain and express certain nerve cell markers. Due to this process, fetal cells could enter the brain during pregnancy and become differentiated into neural cells. Fetal microchimerism can occur in the maternal mouse brain, responding to certain cues in the maternal body. [56]
Fetal microchimerism could have an implication on maternal health. Isolating cells in cultures can alter the properties of the stem cells, but in pregnancy the effects of fetal stem cells can be investigated without in vitro cultures. Once characterized and isolated, fetal cells that are able to cross the blood brain barrier could impact certain procedures. [56] For example, isolating stem cells can be accomplished through taking them from sources like the umbilical cord. These fetal stem cells can be used in intravenous infusion to repair the brain tissue. Hormonal changes in pregnancy alter neurogenesis, which could create favorable environments for fetal cells to respond to injury. [56]
The true function on fetal cells in mothers is not fully known, however, there have been reports of positive and negative health effects. The sharing of genes between the fetus and mother may lead to benefits. Due to not all genes being shared, health complications may arise as a result of resource allocation. [57] During pregnancy, fetal cells are able to manipulate the maternal system to draw resources from the placenta, while the maternal system tries to limit it. [57]
Hyperthyroidism is the condition that occurs due to excessive production of thyroid hormones by the thyroid gland. Thyrotoxicosis is the condition that occurs due to excessive thyroid hormone of any cause and therefore includes hyperthyroidism. Some, however, use the terms interchangeably. Signs and symptoms vary between people and may include irritability, muscle weakness, sleeping problems, a fast heartbeat, heat intolerance, diarrhea, enlargement of the thyroid, hand tremor, and weight loss. Symptoms are typically less severe in the elderly and during pregnancy. An uncommon but life-threatening complication is thyroid storm in which an event such as an infection results in worsening symptoms such as confusion and a high temperature; this often results in death. The opposite is hypothyroidism, when the thyroid gland does not make enough thyroid hormone.
The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate maternal and fetal circulations, and is an important endocrine organ, producing hormones that regulate both maternal and fetal physiology during pregnancy. The placenta connects to the fetus via the umbilical cord, and on the opposite aspect to the maternal uterus in a species-dependent manner. In humans, a thin layer of maternal decidual (endometrial) tissue comes away with the placenta when it is expelled from the uterus following birth. Placentas are a defining characteristic of placental mammals, but are also found in marsupials and some non-mammals with varying levels of development.
In immunology, autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other normal body constituents. Any disease resulting from this type of immune response is termed an "autoimmune disease". Prominent examples include celiac disease, diabetes mellitus type 1, Henoch–Schönlein purpura, systemic lupus erythematosus, Sjögren syndrome, eosinophilic granulomatosis with polyangiitis, Hashimoto's thyroiditis, Graves' disease, idiopathic thrombocytopenic purpura, Addison's disease, rheumatoid arthritis, ankylosing spondylitis, polymyositis, dermatomyositis, and multiple sclerosis. Autoimmune diseases are very often treated with steroids.
Sex differences in medicine include sex-specific diseases or conditions which occur only in people of one sex due to underlying biological factors ; sex-related diseases, which are diseases that are more common to one sex ; and diseases which occur at similar rates in males and females but manifest differently according to sex.
Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is necessary to conclusively diagnose the majority of genetic disorders, with amniocentesis being the gold-standard procedure after 15 weeks' gestation.
Pre-eclampsia is a multi-system disorder specific to pregnancy, characterized by the new onset of high blood pressure and often a significant amount of protein in the urine or by the new onset of high blood pressure along with significant end-organ damage, with or without the proteinuria. When it arises, the condition begins after 20 weeks of pregnancy. In severe cases of the disease there may be red blood cell breakdown, a low blood platelet count, impaired liver function, kidney dysfunction, swelling, shortness of breath due to fluid in the lungs, or visual disturbances. Pre-eclampsia increases the risk of undesirable as well as lethal outcomes for both the mother and the fetus including preterm labor. If left untreated, it may result in seizures at which point it is known as eclampsia.
Rh disease is a type of hemolytic disease of the fetus and newborn (HDFN). HDFN due to anti-D antibodies is the proper and currently used name for this disease as the Rh blood group system actually has more than 50 antigens and not only the D-antigen. The term "Rh Disease" is commonly used to refer to HDFN due to anti-D antibodies, and prior to the discovery of anti-Rho(D) immune globulin, it was the most common type of HDFN. The disease ranges from mild to severe, and occurs in the second or subsequent pregnancies of Rh-D negative women when the biologic father is Rh-D positive.
Hashimoto's thyroiditis, also known as chronic lymphocytic thyroiditis and Hashimoto's disease, is an autoimmune disease in which the thyroid gland is gradually destroyed. A slightly broader term is autoimmune thyroiditis, identical other than that it is also used to describe a similar condition without a goiter.
Hemolytic disease of the newborn, also known as hemolytic disease of the fetus and newborn, HDN, HDFN, or erythroblastosis fetalis, is an alloimmune condition that develops in a fetus at or around birth, when the IgG molecules produced by the mother pass through the placenta. Among these antibodies are some which attack antigens on the red blood cells in the fetal circulation, breaking down and destroying the cells. The fetus can develop reticulocytosis and anemia. The intensity of this fetal disease ranges from mild to very severe, and fetal death from heart failure can occur. When the disease is moderate or severe, many erythroblasts are present in the fetal blood, earning these forms of the disease the name erythroblastosis fetalis.
Hydrops fetalis or hydrops foetalis is a condition in the fetus characterized by an accumulation of fluid, or edema, in at least two fetal compartments. By comparison, hydrops allantois or hydrops amnion is an accumulation of excessive fluid in the allantoic or amniotic space, respectively.
Immune tolerance, also known as immunological tolerance or immunotolerance, refers to the immune system's state of unresponsiveness to substances or tissues that would otherwise trigger an immune response. It arises from prior exposure to a specific antigen and contrasts the immune system's conventional role in eliminating foreign antigens. Depending on the site of induction, tolerance is categorized as either central tolerance, occurring in the thymus and bone marrow, or peripheral tolerance, taking place in other tissues and lymph nodes. Although the mechanisms establishing central and peripheral tolerance differ, their outcomes are analogous, ensuring immune system modulation.
Hemolytic disease of the newborn (anti-Kell1) is the second most common cause of severe hemolytic disease of the newborn (HDN) after Rh disease. Anti-Kell1 is becoming relatively more important as prevention of Rh disease is also becoming more effective.
Hemolytic disease of the newborn (anti-Rhc) can range from a mild to a severe disease. It is the third most common cause of severe HDN. Rh disease is the most common and hemolytic disease of the newborn (anti-Kell) is the second most common cause of severe HDN. It occurs more commonly in women who are Rh D negative.
Neonatal alloimmune thrombocytopenia is a disease that affects babies in which the platelet count is decreased because the mother's immune system attacks her fetus' or newborn's platelets. A low platelet count increases the risk of bleeding in the fetus and newborn. If the bleeding occurs in the brain, there may be long-term effects.
Minor histocompatibility antigen are peptides presented on the cellular surface of donated organs that are known to give an immunological response in some organ transplants. They cause problems of rejection less frequently than those of the major histocompatibility complex (MHC). Minor histocompatibility antigens (MiHAs) are diverse, short segments of proteins and are referred to as peptides. These peptides are normally around 9-12 amino acids in length and are bound to both the major histocompatibility complex (MHC) class I and class II proteins. Peptide sequences can differ among individuals and these differences arise from SNPs in the coding region of genes, gene deletions, frameshift mutations, or insertions. About a third of the characterized MiHAs come from the Y chromosome. Prior to becoming a short peptide sequence, the proteins expressed by these polymorphic or diverse genes need to be digested in the proteasome into shorter peptides. These endogenous or self peptides are then transported into the endoplasmic reticulum with a peptide transporter pump called TAP where they encounter and bind to the MHC class I molecule. This contrasts with MHC class II molecules's antigens which are peptides derived from phagocytosis/endocytosis and molecular degradation of non-self entities' proteins, usually by antigen-presenting cells. MiHA antigens are either ubiquitously expressed in most tissue like skin and intestines or restrictively expressed in the immune cells.
Hemolytic disease of the newborn (anti-RhE) is caused by the anti-RhE antibody of the Rh blood group system. The anti-RhE antibody can be naturally occurring, or arise following immune sensitization after a blood transfusion or pregnancy.
Certain sites of the mammalian body have immune privilege, meaning they are able to tolerate the introduction of antigens without eliciting an inflammatory immune response. Tissue grafts are normally recognised as foreign antigens by the body and attacked by the immune system. However, in immune privileged sites, tissue grafts can survive for extended periods of time without rejection occurring. Immunologically privileged sites include:
An autoimmune disease is a condition that results from an anomalous response of the adaptive immune system, wherein it mistakenly targets and attacks healthy, functioning parts of the body as if they were foreign organisms. It is estimated that there are more than 80 recognized autoimmune diseases, with recent scientific evidence suggesting the existence of potentially more than 100 distinct conditions. Nearly any body part can be involved.
Immune tolerance in pregnancy or maternal immune tolerance is the immune tolerance shown towards the fetus and placenta during pregnancy. This tolerance counters the immune response that would normally result in the rejection of something foreign in the body, as can happen in cases of spontaneous abortion. It is studied within the field of reproductive immunology.
Thyroid disease in pregnancy can affect the health of the mother as well as the child before and after delivery. Thyroid disorders are prevalent in women of child-bearing age and for this reason commonly present as a pre-existing disease in pregnancy, or after childbirth. Uncorrected thyroid dysfunction in pregnancy has adverse effects on fetal and maternal well-being. The deleterious effects of thyroid dysfunction can also extend beyond pregnancy and delivery to affect neurointellectual development in the early life of the child. Due to an increase in thyroxine binding globulin, an increase in placental type 3 deioidinase and the placental transfer of maternal thyroxine to the fetus, the demand for thyroid hormones is increased during pregnancy. The necessary increase in thyroid hormone production is facilitated by high human chorionic gonadotropin (hCG) concentrations, which bind the TSH receptor and stimulate the maternal thyroid to increase maternal thyroid hormone concentrations by roughly 50%. If the necessary increase in thyroid function cannot be met, this may cause a previously unnoticed (mild) thyroid disorder to worsen and become evident as gestational thyroid disease. Currently, there is not enough evidence to suggest that screening for thyroid dysfunction is beneficial, especially since treatment thyroid hormone supplementation may come with a risk of overtreatment. After women give birth, about 5% develop postpartum thyroiditis which can occur up to nine months afterwards. This is characterized by a short period of hyperthyroidism followed by a period of hypothyroidism; 20–40% remain permanently hypothyroid.