Microgrid

Last updated

A microgrid is a local electrical grid with defined electrical boundaries, acting as a single and controllable entity. [1] It is able to operate in grid-connected and in island mode. [2] [3] A 'stand-alone microgrid' or 'isolated microgrid' only operates off-the-grid and cannot be connected to a wider electric power system. [4] Very small microgrids are called nanogrids. [5]

Contents

A grid-connected microgrid normally operates connected to and synchronous with the traditional wide area synchronous grid (macrogrid), but is able to disconnect from the interconnected grid and to function autonomously in "island mode" as technical or economic conditions dictate. [6] In this way, they improve the security of supply within the microgrid cell, and can supply emergency power, changing between island and connected modes. [6] This kind of grids are called 'islandable microgrids'. [7]

A stand-alone microgrid has its own sources of electricity, supplemented with an energy storage system. They are used where power transmission and distribution from a major centralized energy source is too far and costly to operate. [1] They offer an option for rural electrification in remote areas and on smaller geographical islands. [4] A stand-alone microgrid can effectively integrate various sources of distributed generation (DG), especially renewable energy sources (RES). [1]

Control and protection are difficulties to microgrids, as all ancillary services for system stabilization must be generated within the microgrid and low short-circuit levels can be challenging for selective operation of the protection systems. An important feature is also to provide multiple useful energy needs, such as heating and cooling besides electricity, since this allows energy carrier substitution and increased energy efficiency due to waste heat utilization for heating, domestic hot water, and cooling purposes (cross sectoral energy usage). [8]

Definitions

The United States Department of Energy Microgrid Exchange Group [9] defines a microgrid as ‘‘a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode.’’ [10]

The Berkeley Lab defines: "A microgrid consists of energy generation and energy storage that can power a building, campus, or community when not connected to the electric grid, e.g. in the event of a disaster." A microgrid that can be disconnected from the utility grid (at the 'point of common coupling' or PCC) is called an 'islandable microgrid'. [7]

An EU research project [11] describes a microgrid as comprising Low-Voltage (LV) distribution systems with distributed energy resources (DERs) (microturbines, fuel cells, photovoltaics (PV), etc.), storage devices (batteries, flywheels) energy storage system and flexible loads. Such systems can operate either connected or disconnected from the main grid. The operation of microsources in the network can provide benefits to the overall system performance, if managed and coordinated efficiently.[ citation needed ]

Electropedia defines a microgrid as a group of interconnected loads and distributed energy resources with defined electrical boundaries, which form a local electric power system at distribution voltage levels, meaning both low and medium voltage up to 35 kV. This cluster of associated consumer and producer nodes acts as a single controllable entity and is able to operate in either grid-connected or island mode. [3]

Microgrid Knowledge [12] defines a microgrid as a "self-sufficient energy system that serves a discrete geographic footprint, such as a college campus, hospital complex, business center or neighborhood." [13]

A stand-alone microgrid or isolated microgrid, sometimes called an "island grid", only operates off-the-grid and cannot be connected to a wider electric power system. They are usually designed for geographical islands or for rural electrification. [4] In many non-industrialized countries, microgrids that are used to provide access to electricity in previously unelectrified areas are often referred to as "mini grids". [14] Nanogrids belong to a single home or building and the interconnection of multiple nanogrids forming a network (microgrid), facilitating the sharing of power between individual nanogrids. [5]

A typical scheme of an electric based microgrid with renewable energy resources in grid-connected mode Microgrid with RES BESS GRIDconnected.png
A typical scheme of an electric based microgrid with renewable energy resources in grid-connected mode

Campus environment/institutional microgrids

The focus of campus microgrids is aggregating existing on-site generation to support multiple loads located in a tight geographical area where an owner can easily manage them. [15] [16]

Community microgrids

Community microgrids can serve thousands of customers and support the penetration of local energy (electricity, heating, and cooling). [17] In a community microgrid, some houses may have some renewable sources that can supply their demand as well as that of their neighbors within the same community. The community microgrid may also have a centralized or several distributed energy storages. Such microgrids can be in the form of an ac and dc microgrid coupled together through a bi-directional power electronic converter. [18]

Remote off-grid microgrids

These microgrids are generally not designed or intended to connect to the macrogrid and instead operate in an island mode at all times because of economic issues or geographical position. Typically, an "off-grid" microgrid is built in areas that are far distant from any transmission and distribution infrastructure and, therefore, have no connection to the utility grid. [15] [19] Studies have demonstrated that operating a remote area or islands' off-grid microgrids, that are dominated by renewable sources, will reduce the levelized cost of electricity production over the life of such microgrid projects. [20] [21] In some cases, off-grid microgrids are indeed incorporated into a national grid or 'macrogrid', a process that requires technical, regulatory and legal planning. [22]

Large remote areas may be supplied by several independent microgrids, each with a different owner (operator). Although such microgrids are traditionally designed to be energy self-sufficient, intermittent renewable sources and their unexpected and sharp variations can cause unexpected power shortfall or excessive generation in those microgrids. Without energy storage and smart controls, this will immediately cause unacceptable voltage or frequency deviation in the microgrids. To remedy such situations, it is possible to interconnect such microgrids provisionally to a suitable neighboring microgrid to exchange power and improve the voltage and frequency deviations. [23] [24] This can be achieved through a power electronics-based switch [25] [26] after a proper synchronization [27] or a back to back connection of two power electronic converters [28] and after confirming the stability of the new system. The determination of a need to interconnect neighboring microgrids and finding the suitable microgrid to couple with can be achieved through optimization [29] or decision making [30] approaches.

Because remote off-grid microgrids are often small and built from scratch, they have the potential to incorporate best practices from the global electricity sector and to incorporate and drive energy innovation. [31] It is now common to see remote off-grid microgrids being largely powered by renewable energy and operated with customer-level smart controls, something that is not always easy to implement in the larger power sector because of incumbent interests and older, pre-existing infrastructure. [32] [33]

Military base microgrids

These microgrids are being actively deployed with focus on both physical and cyber security for military facilities in order to assure reliable power without relying on the macrogrid. [15] [34]

Commercial and industrial (C&I) microgrids

These types of microgrids are maturing quickly in North America and eastern Asia; however, the lack of well-known standards for these types of microgrids limits them globally. Main reasons for the installation of an industrial microgrid are power supply security and its reliability. There are many manufacturing processes in which an interruption of the power supply may cause high revenue losses and long start-up time. [15] [19] Industrial microgrids can be designed to supply circular economy (near-)zero-emission industrial processes, and can integrate combined heat and power (CHP) generation, being fed by both renewable sources and waste processing; energy storage can be additionally used to optimize the operations of these sub-systems. [35] Microgrids can also be anchored by a large commercial retailer with a large quantity of generation for resiliency or economic reasons. [36]

Topologies of microgrids

Architectures are needed to manage the flow of energy from different types of sources into the electrical grid. Thus, the microgrid can be classified into three topologies: [37]

AC microgrid

Power sources with AC output are interfaced to AC bus through AC/AC converter which will transform the AC variable frequency and voltage to AC waveform with another frequency at another voltage. Whilst power sources with DC output use DC/AC converters for the connection to the AC bus.

DC microgrid

In DC microgrid topology, power sources with DC output are connected to DC bus directly or by DC/DC converters. On the other hand, power sources with AC output are connected to the DC bus through AC/DC converter.

Hybrid microgrid

The hybrid microgrid has topology for both power source AC and DC output. In addition, AC and DC buses are connected to each other through a bidirectional converter, allowing power to flow in both directions between the two buses.

Basic components in microgrids

The Solar Settlement, a sustainable housing community project in Freiburg, Germany. SoSie+SoSchiff Ansicht.jpg
The Solar Settlement, a sustainable housing community project in Freiburg, Germany.

Local generation

A microgrid presents various types of generation sources that feed electricity, heating, and cooling to the user. These sources are divided into two major groups – thermal energy sources (e.g.,. natural gas or biogas generators or micro combined heat and power) and renewable generation sources (e.g. wind turbines and solar).[ citation needed ]

Consumption

In a microgrid, consumption simply refers to elements that consume electricity, heat, and cooling, which range from single devices to the lighting and heating systems of buildings, commercial centers, etc. In the case of controllable loads, electricity consumption can be modified according to the demands of the network.[ citation needed ]

Energy storage

In a microgrid, energy storage performs multiple functions, such as ensuring power quality, performing frequency and voltage regulation, smoothing the output of renewable energy sources, providing backup power for the system, and playing a crucial role in cost optimization. Energy storage may be achieved by a combination of chemical, electrical, pressure, gravitational, flywheel, and heat storage technologies. When multiple energy storage devices with various capacities are available in a microgrid, it is preferred to coordinate their charging and discharging such that a smaller energy storage device does not discharge faster than those with larger capacities. Likewise, it is preferred that a smaller storage device does not get fully charged before those with larger capacities. This can be achieved under a coordinated control of energy storage devices based on their state of charge. [38] If multiple energy storage systems (possibly working on different technologies) are used and they are controlled by a unique supervising unit (an energy management system - EMS), a hierarchical control based on a master/slaves architecture can ensure best operations, particularly in the islanded mode. [35]

Point of common coupling (PCC)

This is the point in the electric circuit where a microgrid is connected to a main grid. [39] Microgrids that do not have a PCC are called isolated microgrids which are usually present in remote sites (e.g., remote communities or remote industrial sites) where an interconnection with the main grid is not feasible due to either technical or economic constraints.[ citation needed ]

Advantages and challenges of microgrids

Advantages

A microgrid is capable of operating in grid-connected and stand-alone modes and of handling the transition between the two. In the grid-connected mode, ancillary services can be provided by trading activity between the microgrid and the main grid. Other possible revenue streams exist. [40] In the islanded mode, the real and reactive power generated within the microgrid, including that provided by the energy storage system, should be in balance with the demand of local loads. Microgrids offer an option to balance the need to reduce carbon emissions with continuing to provide reliable electric energy in periods of time when renewable sources of power are not available. Microgrids also offer the security of being hardened from severe weather and natural disasters by not having large assets and miles of above-ground wires and other electric infrastructure that need to be maintained or repaired following such events. [41] [42]

A microgrid may transition between these two modes because of scheduled maintenance, degraded power quality or a shortage in the host grid, faults in the local grid, or for economical reasons. [42] [43] By means of modifying energy flow through microgrid components, microgrids facilitate the integration of renewable energy, such as photovoltaic, wind and fuel cell generations, without requiring re-design of the national distribution system. [43] [44] [45] Modern optimization methods can also be incorporated into the microgrid energy management system to improve efficiency, economics, and resiliency. [41] [46] [45] [47]

Challenges

Microgrids, and the integration of distributed energy resource (DER) units in general, introduce a number of operational challenges that need to be addressed in the design of control and protection systems, in order to ensure that the present levels of reliability are not significantly affected, and the potential benefits of Distributed Generation (DG) units are fully harnessed. Some of these challenges arise from assumptions typically applied to conventional distribution systems that are no longer valid, while others are the result of stability issues formerly observed only at a transmission system level. [42] The most relevant challenges in microgrid protection and control include:

Modelling tools

To plan and install microgrids correctly, engineering modelling is needed. Multiple simulation tools and optimization tools exist to model the economic and electric effects of microgrids. A widely used economic optimization tool is the Distributed Energy Resources Customer Adoption Model (DER-CAM) from Lawrence Berkeley National Laboratory. Another free tool is the Solar Alone Multi-objective Advisor (SAMA), an open-source microgrid optimization software program designed to optimize hybrid energy system sizes economically (primarily powered with solar photovoltaic systems) using metaheuristic algorithms based on specific load profiles and meteorological data. [52] [53] Another is HOMER (Hybrid Optimization Model for Multiple Energy Resources), originally developed by the National Renewable Energy Laboratory. There are also some power flow and electrical design tools guiding microgrid developers. The Pacific Northwest National Laboratory designed the publicly available GridLAB-D tool and the Electric Power Research Institute (EPRI) designed OpenDSS. A European tool that can be used for electrical, cooling, heating, and process heat demand simulation is EnergyPLAN from Aalborg University in Denmark. The open source grid planning tool OnSSET has been deployed to investigate microgrids using a three‑tier analysis beginning with settlement archetypes (case‑studied using Bolivia). [54]

Microgrid control

Hierarchical Control Microgrid Hierarchical Control.png
Hierarchical Control

In regards to the architecture of microgrid control, or any control problem, there are two different approaches that can be identified: centralized [41] [55] and decentralized. [56] A fully centralized control relies on a large amount of information transmittance between involving units before a decision is made at a single point. Implementation is difficult since interconnected power systems usually cover extended geographic locations and involve an enormous number of units. On the other hand, in a fully decentralized control, each unit is controlled by its local controller without knowing the situation of others. [57] A compromise between those two extreme control schemes can be achieved by means of a hierarchical control scheme [58] consisting of three control levels: primary, secondary, and tertiary. [41] [42] [59]

Primary control

The primary control is designed to satisfy the following requirements:

The primary control provides the setpoints for a lower controller which are the voltage and current control loops of DERs. These inner control loops are commonly referred to as zero-level control. [60]

Secondary control

Secondary control has typically seconds to minutes sampling time (i.e. slower than the previous one) which justifies the decoupled dynamics of the primary and the secondary control loops and facilitates their individual designs. The setpoint of primary control is given by secondary control [61] in which, as a centralized controller, it restores the microgrid voltage and frequency and compensates for the deviations caused by variations of loads or renewable sources. The secondary control can also be designed to satisfy the power quality requirements, e.g., voltage balancing at critical buses. [60]

Tertiary control

Tertiary control is the last (and the slowest) control level, which considers economical concerns in the optimal operation of the microgrid (sampling time is from minutes to hours), and manages the power flow between microgrid and main grid. [60] This level often involves the prediction of weather, grid tariff, and loads in the next hours or day to design a generator dispatch plan that achieves economic savings. [45] More advanced techniques can also provide end to end control of a microgrid using machine learning techniques such as deep reinforcement learning. [62]

In case of emergencies such as blackouts, tertiary control can manage a group of interconnected microgrids to form what is called "microgrid clustering", acting as a virtual power plant to continue supplying critical loads. During these situations the central controller should select one of the microgrids to be the slack (i.e. master) and the rest as PV and load buses according to a predefined algorithm and the existing conditions of the system (i.e. demand and generation). In this case, the control should be real time or at least at a high sampling rate. [48]

IEEE 2030.7

A less utility-influenced controller framework is that from the Institute of Electrical and Electronics Engineers, the IEEE 2030.7. [63] The concept relies on 4 blocks: a) Device level control (e.g. voltage and frequency control), b) Local area control (e.g. data communication), c) Supervisory (software) control (e.g. forward looking dispatch optimization of generation and load resources), and d) Grid layers (e.g. communication with utility).[ citation needed ]

Elementary control

A wide variety of complex control algorithms exist, making it difficult for small microgrids and residential distributed energy resource (DER) users to implement energy management and control systems. Communication upgrades and data information systems can be expensive. Some projects try to simplify and reduce the expense of control via off-the-shelf products (e.g. using a Raspberry Pi). [64] [65]

Examples

Hajjah and Lahj, Yemen

The UNDP project “Enhanced Rural Resilience in Yemen” (ERRY) uses community-owned solar microgrids. It cuts energy costs to just 2 cents per hour (whereas diesel-generated electricity costs 42 cents per hour). It won the Ashden Awards for Humanitarian Energy in 2020. [66]

Île d'Yeu

A two-year pilot program, called Harmon’Yeu, was initiated in the spring of 2020 to interconnect 23 houses in the Ker Pissot neighborhood and surrounding areas with a microgrid that was automated as a smart grid with software from Engie. Sixty-four solar panels with a peak capacity of 23.7 kW were installed on five houses and a battery with a storage capacity of 15 kWh was installed on one house. Six houses store excess solar energy in their hot water heaters. A dynamic system apportions the energy provided by the solar panels and stored in the battery and hot water heaters to the system of 23 houses. The smart grid software dynamically updates energy supply and demand in 5-minute intervals, deciding whether to pull energy from the battery or from the panels and when to store it in the hot water heaters. This pilot program was the first such project in France. [67] [68]

Les Anglais, Haiti

A wirelessly managed microgrid is deployed in rural Les Anglais, Haiti. [69] The system consists of a three-tiered architecture with a cloud-based monitoring and control service, a local embedded gateway infrastructure and a mesh network of wireless smart meters deployed at over 500 buildings. [31]

Non-technical loss (NTL) represents a major challenge when providing reliable electrical service in developing countries, where it often accounts for 11-15% of total generation capacity. [70] An extensive data-driven simulation on seventy-two days of wireless meter data from a 430-home microgrid deployed in Les Anglais investigated how to distinguish NTL from the total power losses, aiding in energy theft detection. [71]

Mpeketoni, Kenya

The Mpeketoni Electricity Project, a community-based diesel-powered micro-grid system, was set up in rural Kenya near Mpeketoni. Due to the installment of these microgrids, Mpeketoni has seen a large growth in its infrastructure. Such growth includes increased productivity per worker, at values of 100% to 200%, and an income level increase of 20–70% depending on the product. [72]

Stone Edge Farm Winery

A micro-turbine, fuel-cell, multiple battery, hydrogen electrolyzer, and PV enabled winery in Sonoma, California. [73] [74]

See also

Related Research Articles

<span class="mw-page-title-main">Electric power distribution</span> Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 33 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

<span class="mw-page-title-main">Distributed generation</span> Decentralised electricity generation

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

Energy demand management, also known as demand-side management (DSM) or demand-side response (DSR), is the modification of consumer demand for energy through various methods such as financial incentives and behavioral change through education.

Electric power quality is the degree to which the voltage, frequency, and waveform of a power supply system conform to established specifications. Good power quality can be defined as a steady supply voltage that stays within the prescribed range, steady AC frequency close to the rated value, and smooth voltage curve waveform. In general, it is useful to consider power quality as the compatibility between what comes out of an electric outlet and the load that is plugged into it. The term is used to describe electric power that drives an electrical load and the load's ability to function properly. Without the proper power, an electrical device may malfunction, fail prematurely or not operate at all. There are many ways in which electric power can be of poor quality, and many more causes of such poor quality power.

<span class="mw-page-title-main">Vehicle-to-grid</span> Vehicle charging system that allows discharge and storage of electricity

Vehicle-to-grid (V2G) describes a system in which plug-in electric vehicles (PEVs) sell demand response services to the grid. Demand services are either delivering electricity to the grid or reducing the rate of charge from the grid. Demand services reduce the peaks in demand for grid supply, and hence reduce the probability of disruption from load variations. Vehicle-to-load (V2L) and Vehicle-to-vehicle (V2V) are related, but the AC phase is not synchronised with the grid, so the power is only available to "off-grid" load.

<span class="mw-page-title-main">Demand response</span> Techniques used to prevent power networks from being overwhelmed

Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Until the 21st century decrease in the cost of pumped storage and batteries, electric energy could not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response, a type of energy demand management, seeks to adjust in real-time the demand for power instead of adjusting the supply.

Islanding is the intentional or unintentional division of an interconnected power grid into individual disconnected regions with their own power generation.

Doubly fed electric machines, also slip-ring generators, are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine.

A grid-tied electrical system, also called tied to grid or grid tie system, is a semi-autonomous electrical generation or grid energy storage system which links to the mains to feed excess capacity back to the local mains electrical grid. When insufficient electricity is available, electricity drawn from the mains grid can make up the shortfall. Conversely when excess electricity is available, it is sent to the main grid. When the Utility or network operator restricts the amount of energy that goes into the grid, it is possible to prevent any input into the grid by installing Export Limiting devices.

<span class="mw-page-title-main">Smart grid</span> Type of electrical grid

The smart grid is an enhancement of the 20th century electrical grid, using two-way communications and distributed so-called intelligent devices. Two-way flows of electricity and information could improve the delivery network. Research is mainly focused on three systems of a smart grid – the infrastructure system, the management system, and the protection system. Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.

A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. Many utility-scale PV systems use tracking systems that follow the sun's daily path across the sky to generate more electricity than fixed-mounted systems.

<span class="mw-page-title-main">Electrical grid</span> Interconnected network for delivering electricity to consumers

An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids consist of power stations, electrical substations to step voltage up or down, electric power transmission to carry power over long distances, and finally electric power distribution to customers. In that last step, voltage is stepped down again to the required service voltage. Power stations are typically built close to energy sources and far from densely populated areas. Electrical grids vary in size and can cover whole countries or continents. From small to large there are microgrids, wide area synchronous grids, and super grids. The combined transmission and distribution network is part of electricity delivery, known as the power grid.

<span class="mw-page-title-main">Wide area synchronous grid</span> Regional electrical grid

A wide area synchronous grid is a three-phase electric power grid that has regional scale or greater that operates at a synchronized utility frequency and is electrically tied together during normal system conditions. Also known as synchronous zones, the most powerful is the Northern Chinese State Grid with 1,700 gigawatts (GW) of generation capacity, while the widest region served is that of the IPS/UPS system serving most countries of the former Soviet Union. Synchronous grids with ample capacity facilitate electricity trading across wide areas. In the ENTSO-E in 2008, over 350,000 megawatt hours were sold per day on the European Energy Exchange (EEX).

<span class="mw-page-title-main">Unified power flow controller</span> Electrical device for reactive power compensation on high-voltage electricity transmission networks

A unified power flow controller (UPFC) is an electrical device for providing fast-acting reactive power compensation on high-voltage electricity transmission networks. It uses a pair of three-phase controllable bridges to produce current that is injected into a transmission line using a series transformer. The controller can control active and reactive power flows in a transmission line.

Ancillary services are the services necessary to support the transmission of electric power from generators to consumers given the obligations of control areas and transmission utilities within those control areas to maintain reliable operations of the interconnected transmission system.

<span class="mw-page-title-main">Synchronverter</span> Type of electrical power inverter

Synchronverters or virtual synchronous generators are inverters which mimic synchronous generators (SG) to provide "synthetic inertia" for ancillary services in electric power systems. Inertia is a property of standard synchronous generators associated with the rotating physical mass of the system spinning at a frequency proportional to the electricity being generated. Inertia has implications towards grid stability as work is required to alter the kinetic energy of the spinning physical mass and therefore opposes changes in grid frequency. Inverter-based generation inherently lacks this property as the waveform is being created artificially via power electronics.

Wide-area damping control (WADC) is a class of automatic control systems used to provide stability augmentation to modern electrical power systems known as smart grids. Actuation for the controller is provided via modulation of capable active or reactive power devices throughout the grid. Such actuators are most commonly previously-existing power system devices, such as high-voltage direct current (HVDC) transmission lines and static VAR compensators (SVCs) which serve primary purposes not directly related to the WADC application. However, damping may be achieved with the utilization of other devices installed with the express purpose of stability augmentation, including energy storage technologies. Wide-area instability of a large electrical grid unequipped with a WADC is the result of the loss of generator rotor synchronicity, and is typically envisioned as a generator oscillating with an undamped exponential trajectory as the result of insufficient damping torque.

<span class="mw-page-title-main">Mini-grid</span> Small scale electricity distribution grid

A mini-grid is an aggregation of electrical loads and one or more energy sources operating as a single system providing electricity and possibly heat, isolated from a main power grid. A modern mini-grid may include renewable- and fossil fuel-based power generation, energy storage, and load control. A mini grid can be fully isolated from the main grid or interconnected to it. If it is interconnected to the main grid, it must also be able to isolate (“island”) from the main grid and continue to serve its customers while operating in an island or autonomous mode. Mini-grids are used as a cost-effective solution for electrifying rural communities where a grid connection is challenging in terms of transmission and cost for the end user population density, with mini-grids often used to electrify rural communities of a hundred or more households that are 10 km or more from the main grid.

Commelec is a framework that provides distributed and real-time control of electrical grids by using explicit setpoints for active/reactive power absorptions/injections. It is based on the joint-operation of communication and electricity systems. Commelec has been developed by scientists at École Polytechnique Fédérale de Lausanne, a research institute and university in Lausanne, Switzerland. The Commelec project is part of the SNSF’s National Research Programme “Energy Turnaround”.

<span class="mw-page-title-main">Gabriela Hug</span> Swiss electrical engineer (born 1979)

Gabriela Hug-Glanzmann is a Swiss electrical engineer and an associate professor and Principal Investigator of the Power Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zürich within the Department of Information Technology and Electrical Engineering. Hug studies the control and optimization of electrical power systems with a focus on sustainable energy.

References

  1. 1 2 3 Hu, J.; Lanzon, A. (2019). "Distributed finite-time consensus control for heterogeneous battery energy storage systems in droop-controlled microgrids". IEEE Transactions on Smart Grid. 10 (5): 4751–4761. doi:10.1109/TSG.2018.2868112. S2CID   117469364.
  2. What are Microgrids and Why are They Becoming so Popular? Enchanted Rock, March 2023
  3. 1 2 "microgrid". Electropedia. International Electrotechnical Commission. 2017-12-15. group of interconnected loads and distributed energy resources with defined electrical boundaries forming a local electric power system at distribution voltage levels, that acts as a single controllable entity and is able to operate in either grid-connected or island mode
  4. 1 2 3 "isolated microgrid". Electropedia. International Electrotechnical Commission. 2017-12-15. group of interconnected loads and distributed energy resources with defined electrical boundaries forming a local electric power system at distribution voltage levels, that cannot be connected to a wider electric power system
  5. 1 2 Burmester, Daniel; Rayudu, Ramesh; Seah, Winston; Akinyele, Daniel (January 2017). "A review of nanogrid topologies and technologies". Renewable and Sustainable Energy Reviews. 67: 760–775. Bibcode:2017RSERv..67..760B. doi:10.1016/j.rser.2016.09.073. ISSN   1364-0321.
  6. 1 2 Hu, J.; Bhowmick, P. (2020). "A consensus-based robust secondary voltage and frequency control scheme for islanded microgrids". International Journal of Electrical Power & Energy Systems. 116: 105575. Bibcode:2020IJEPE.11605575H. doi:10.1016/j.ijepes.2019.105575. S2CID   208837689.
  7. 1 2 Microgrids and Vehicle-Grid Integration. Berkeley Lab. Retrieved 21 June 2022
  8. "Features and Benefits - Microgrids". www.districtenergy.org. Retrieved 2018-06-28.
  9. Energy & Environmental Resources Group, ed. (2011-08-30). "DOE Microgrid Workshop Report" (PDF). Office of Electricity Delivery and Energy Reliability.
  10. Ton, Dan T.; Smith, Merrill A. (October 2012). "The U.S. Department of Energy's Microgrid Initiative". The Electricity Journal. 25 (8): 84–94. Bibcode:2012ElecJ..25h..84T. doi:10.1016/j.tej.2012.09.013.
  11. Hatziargyriou, Nikos (2014). Microgrids Architectures and Control. John Wiley and Sons Ltd. p. 4. ISBN   978-1-118-72068-4.
  12. Wood, Elisa (2023-03-13). "What is a Microgrid?". Microgrid Knowledge. Retrieved 2024-10-22.
  13. Wood, Elisa (2023-03-13). "What is a Microgrid?". Microgrid Knowledge. Retrieved 2024-10-22.
  14. "ESMAP Global Facility on Mini Grids: Scaling Up Mini Grid Markets to Provide Electricity to Half a Billion People by 2030". World Bank. Retrieved 2022-09-03.
  15. 1 2 3 4 Ernie Hayden. "Introduction to Microgrids" (PDF). Archived from the original (PDF) on 19 February 2018. Retrieved 20 June 2016.
  16. Saleh, Mahmoud; Esa, Yusef; Mhandi, Yassine; Brandauer, Werner; Mohamed, Ahmed (2016). "Design and implementation of CCNY DC microgrid testbed". 2016 IEEE Industry Applications Society Annual Meeting. pp. 1–7. doi:10.1109/IAS.2016.7731870. ISBN   978-1-4799-8397-1. S2CID   16464909.
  17. Thomson, Greg (2018). "The Sonoma Community Microgrid Initiative" (PDF). Clean Coalition.
  18. Chandrasena, Ruwan P.S.; Shahnia, Farhad; Ghosh, Arindam; Rajakaruna, Sumedha (2015-08-06). "Dynamic operation and control of a hybrid nanogrid system for future community houses". IET Generation, Transmission & Distribution. 9 (11): 1168–1178. doi:10.1049/iet-gtd.2014.0462.
  19. 1 2 "Design and Analyze Micro-Grids".
  20. Ali, Liaqat; Shahnia, Farhad (June 2017). "Determination of an economically-suitable and sustainable standalone power system for an off-grid town in Western Australia". Renewable Energy. 106: 243–254. Bibcode:2017REne..106..243A. doi:10.1016/j.renene.2016.12.088. S2CID   113534323.
  21. Shahnia, Farhad; Moghbel, Moayed; Arefi, Ali; Shafiullah, G. M.; Anda, Martin; Vahidnia, Arash (2017). "Levelized cost of energy and cash flow for a hybrid solar-wind-diesel microgrid on Rottnest island". 2017 Australasian Universities Power Engineering Conference (AUPEC). pp. 1–6. doi:10.1109/aupec.2017.8282413. ISBN   9781538626474. S2CID   44025895.
  22. Greacen, Chris (2020-09-22). "INTEGRATING MINI GRIDS INTO NATIONAL GRIDS: TECHNICAL AND ORGANIZATIONAL ASPECTS | Nautilus Institute for Security and Sustainability". nautilus.org. Retrieved 2022-11-01.
  23. Pashajavid, Ehsan; Shahnia, Farhad; Ghosh, Arindam (2015). "Development of a Self-Healing Strategy to Enhance the Overloading Resilience of Islanded Microgrids". IEEE Transactions on Smart Grid: 1. doi:10.1109/tsg.2015.2477601. S2CID   7173317.
  24. Pashajavid, Ehsan; Shahnia, Farhad; Ghosh, Arindam (2017-01-05). "Provisional internal and external power exchange to support remote sustainable microgrids in the course of power deficiency". IET Generation, Transmission & Distribution. 11 (1): 246–260. doi:10.1049/iet-gtd.2016.0897. S2CID   114528954.
  25. Pashajavid, Ehsan; Shahnia, Farhad; Ghosh, Arindam (2015). "Overload management of autonomous microgrids". 2015 IEEE 11th International Conference on Power Electronics and Drive Systems. pp. 73–78. doi:10.1109/peds.2015.7203515. ISBN   9781479944026. S2CID   1213125.
  26. Pashajavid, Ehsan; Shahnia, Farhad; Ghosh, Arindam (2015). "Overloading conditions management in remote networks by coupling neighboring microgrids". 2015 50th International Universities Power Engineering Conference (UPEC). pp. 1–6. doi:10.1109/upec.2015.7339874. ISBN   9781467396820. S2CID   11118089.
  27. Shahnia, Farhad; Bourbour, Soheil (September 2017). "A practical and intelligent technique for coupling multiple neighboring microgrids at the synchronization stage". Sustainable Energy, Grids and Networks. 11: 13–25. Bibcode:2017SEGN...11...13S. doi:10.1016/j.segan.2017.06.002.
  28. Susanto, Julius; Shahnia, Farhad; Ghosh, Arindam; Rajakaruna, Sumehda (2014). "Interconnected microgrids via back-to-back converters for dynamic frequency support". 2014 Australasian Universities Power Engineering Conference (AUPEC). pp. 1–6. doi:10.1109/aupec.2014.6966616. hdl:20.500.11937/40897. ISBN   9780646923758. S2CID   22805171.
  29. Arefi, Ali; Shahnia, Farhad (2018). "Tertiary Controller-Based Optimal Voltage and Frequency Management Technique for Multi-Microgrid Systems of Large Remote Towns". IEEE Transactions on Smart Grid. 9 (6): 5962–5974. doi:10.1109/tsg.2017.2700054. S2CID   53042777.
  30. Shahnia, Farhad; Bourbour, Soheil; Ghosh, Arindam (2015). "Coupling Neighboring Microgrids for Overload Management Based on Dynamic Multicriteria Decision-Making". IEEE Transactions on Smart Grid: 1. doi:10.1109/tsg.2015.2477845. S2CID   2574489.
  31. 1 2 "Clean, relaible, grid electricity is possible! Solar powered microgrids, community-led development, and feminist electrification". EarthSpark International. Retrieved 2022-11-01.
  32. "Benchmarking Africa's Minigrids Report 2022 - amda". African Minigrid Developers Association (AMDA). 2022-07-01. Retrieved 2022-11-01.
  33. "The Bold Declaration". EarthSpark International. Retrieved 2022-11-01.
  34. Emily W. Prehoda; Chelsea Schelly; Joshua M. Pearce (2017). "U.S. Strategic Solar Photovoltaic-Powered Microgrid Deployment for Enhanced National Security". Renewable and Sustainable Energy Reviews. 78: 167–175. Bibcode:2017RSERv..78..167P. doi:10.1016/j.rser.2017.04.094 . Retrieved 23 May 2017.
  35. 1 2 Guarnieri, Massimo; Bovo, Angelo; Giovannelli, Antonio; Mattavelli, Paolo (2018). "A Real Multitechnology Microgrid in Venice: A Design Review". IEEE Industrial Electronics Magazine. 12 (3): 19–31. doi:10.1109/MIE.2018.2855735. hdl: 11577/3282913 . S2CID   52896438.
  36. Shah, Kunal K.; George, Dane; Swan, Lukas; Pearce, Joshua M. (2021). "Performance and analysis of retail store-centered microgrids with solar photovoltaic parking lot, cogeneration, and battery-based hybrid systems". Engineering Reports. 3 (11). doi: 10.1002/eng2.12418 . ISSN   2577-8196.
  37. Hybrid-renewable energy systems in microgrids : integration, developments and control. A. Hina Fathima, Prabaharan N, Palanisamy K, Akhtar Kalam, Saad Mekhilef, Jackson J. Justo. [Place of publication not identified]. 2018. ISBN   978-0-08-102494-2. OCLC   1038716456.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  38. Hosseinimehr, Tahoura; Ghosh, Arindam; Shahnia, Farhad (May 2017). "Cooperative control of battery energy storage systems in microgrids". International Journal of Electrical Power & Energy Systems. 87: 109–120. Bibcode:2017IJEPE..87..109H. doi:10.1016/j.ijepes.2016.12.003.
  39. Alexis Kwasinki. "Grid-Microgrids Interconnection" . Retrieved 20 June 2016.
  40. Stadler, Michael; Cardoso, Gonçalo; Mashayekh, Salman; Forget, Thibault; DeForest, Nicholas; Agarwal, Ankit; Schönbein, Anna (2016). "Value streams in microgrids: A literature review". Applied Energy. 162: 980–989. Bibcode:2016ApEn..162..980S. doi: 10.1016/j.apenergy.2015.10.081 .
  41. 1 2 3 4 Saleh, Mahmoud; Esa, Yusef; Mohamed, Ahmed A. (2019). "Communication-Based Control for DC Microgrids". IEEE Transactions on Smart Grid. 10 (2): 2180–2195. doi: 10.1109/TSG.2018.2791361 .
  42. 1 2 3 4 5 6 7 8 9 Olivares, Daniel E.; Mehrizi-Sani, Ali; Etemadi, Amir H.; Canizares, Claudio A.; Iravani, Reza; Kazerani, Mehrdad; Hajimiragha, Amir H.; Gomis-Bellmunt, Oriol; Saeedifard, Maryam; Palma-Behnke, Rodrigo; Jimenez-Estevez, Guillermo A.; Hatziargyriou, Nikos D. (2014). "Trends in Microgrid Control". IEEE Transactions on Smart Grid. 5 (4): 1905–1919. doi:10.1109/TSG.2013.2295514. S2CID   7188252.
  43. 1 2 A. A. Salam, A. Mohamed and M. A. Hannan (2008). "Technical challenges on Microgrids". ARPN Journal of Engineering and Applied Sciences. 3: 64.
  44. F.D Kanellos; A.I. Tsouchnikas; N.D. Hatziargyriou. (June 2005). "Microgrid Simulation during Grid Connected and Islanded Modes of Operation". Proc. of the Canada International Conference on Power System Transient (IPTS'05). 113: 19–23.
  45. 1 2 3 Jin, Ming; Feng, Wei; Liu, Ping; Marnay, Chris; Spanos, Costas (2017-02-01). "MOD-DR: Microgrid optimal dispatch with demand response". Applied Energy. 187: 758–776. Bibcode:2017ApEn..187..758J. doi: 10.1016/j.apenergy.2016.11.093 .
  46. Tenti, Paolo; Caldognetto, Tommaso (2019). "On Microgrid Evolution to Local Area Energy Network (E-LAN)". IEEE Transactions on Smart Grid. 10 (2): 1567–1576. doi:10.1109/TSG.2017.2772327. S2CID   67872491.
  47. Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel (2017). "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids". Applied Energy. 187: 154–168. Bibcode:2017ApEn..187..154M. doi: 10.1016/j.apenergy.2016.11.020 .
  48. 1 2 Saleh, Mahmoud S.; Althaibani, Ammar; Esa, Yusef; Mhandi, Yassine; Mohamed, Ahmed A. (2015). "Impact of clustering microgrids on their stability and resilience during blackouts". 2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). pp. 195–200. doi:10.1109/ICSGCE.2015.7454295. ISBN   978-1-4673-8732-3. S2CID   25664994.
  49. Dragicevic, Tomislav; Lu, Xiaonan; Vasquez, Juan; Guerrero, Josep (2015). "DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques" (PDF). IEEE Transactions on Power Electronics: 1. doi:10.1109/TPEL.2015.2478859. S2CID   6673928.
  50. Dragicevic, Tomislav; Lu, Xiaonan; Vasquez, Juan C.; Guerrero, Josep M. (2016). "DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues". IEEE Transactions on Power Electronics. 31 (5): 3528–3549. Bibcode:2016ITPE...31.3528D. doi:10.1109/TPEL.2015.2464277. S2CID   1031452.
  51. Kim, Yun-Su; Kim, Eung-Sang; Moon, Seung-Il (2016). "Frequency and Voltage Control Strategy of Standalone Microgrids with High Penetration of Intermittent Renewable Generation Systems". IEEE Transactions on Power Systems. 31 (1): 718–728. Bibcode:2016ITPSy..31..718K. doi:10.1109/TPWRS.2015.2407392. S2CID   37857905.
  52. Sadat, Seyyed Ali. "Solar Alone Multi-objective Advisor (SAMA)". Appropedia, the sustainability wiki. Retrieved 2024-04-26.
  53. Ali Sadat, Seyyed; Takahashi, Jonathan; Pearce, Joshua M. (December 2023). "A Free and open-source microgrid optimization tool: SAMA the solar alone Multi-Objective Advisor". Energy Conversion and Management. 298: 117686. Bibcode:2023ECM...29817686A. doi:10.1016/j.enconman.2023.117686. ISSN   0196-8904.
  54. Peña Balderrama, JG; Balderrama Subieta, S; Lombardi, Francesco; Stevanato, N; Sahlberg, A; Howells, Mark; Colombo, E; Quoilin, Sylvain (1 June 2020). "Incorporating high-resolution demand and techno-economic optimization to evaluate micro-grids into the Open Source Spatial Electrification Tool (OnSSET)". Energy for Sustainable Development. 56: 98–118. Bibcode:2020ESusD..56...98P. doi: 10.1016/j.esd.2020.02.009 . hdl: 10044/1/86932 . ISSN   0973-0826 . Retrieved 2021-02-19. Open Access logo PLoS transparent.svg
  55. Saleh, Mahmoud; Esa, Yusef; Mohamed, Ahmed (2017). "Hardware based testing of communication based control for DC microgrid". 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA). pp. 902–907. doi:10.1109/ICRERA.2017.8191190. ISBN   978-1-5386-2095-3. S2CID   10845589.
  56. Pashajavid, Ehsan; Shahnia, Farhad; Ghosh, Arindam (2015). "A decentralized strategy to remedy the power deficiency in remote area microgrids". 2015 50th International Universities Power Engineering Conference (UPEC). pp. 1–6. doi:10.1109/upec.2015.7339865. ISBN   9781467396820. S2CID   10350756.
  57. M. D. Ilić; S. X. Liu (1996). Hierarchical Power Systems Control: Its Value in a Changing Industry (Advances in Industrial Control). London: Springer.
  58. Braitor, Andrei-Constantin (2022). Advanced Hierarchical Control and Stability Analysis of DC Microgrids. Cham: Springer. ISBN   978-3-030-95414-7.
  59. Shahnia, Farhad; Ghosh, Arindam; Rajakaruna, Sumedha; Chandrasena, Ruwan P.S. (2014-02-01). "Primary control level of parallel distributed energy resources converters in system of multiple interconnected autonomous microgrids within self-healing networks". IET Generation, Transmission & Distribution. 8 (2): 203–222. doi: 10.1049/iet-gtd.2013.0126 . S2CID   110232738.
  60. 1 2 3 Bidram, Ali; Davoudi, Ali (2012). "Hierarchical Structure of Microgrids Control System". IEEE Transactions on Smart Grid. 3 (4): 1963–1976. doi:10.1109/TSG.2012.2197425. S2CID   37821642.
  61. Chandrasena, Ruwan P.S.; Shahnia, Farhad; Ghosh, Arindam; Rajakaruna, Sumedha (2014). "Secondary control in microgrids for dynamic power sharing and voltage/Frequency adjustment". 2014 Australasian Universities Power Engineering Conference (AUPEC). pp. 1–8. doi:10.1109/aupec.2014.6966619. hdl:20.500.11937/11871. ISBN   9780646923758. S2CID   1983658.
  62. François-Lavet, Vincent; Taralla, David; Ernst, Damien; Fonteneau, Raphael. Deep reinforcement learning solutions for energy microgrids management. European Workshop on Reinforcement Learning (EWRL 2016). hdl:2268/203831.
  63. IEEE 2030.7
  64. Furst, Jonathan; Gawinowski, Nik; Buttrich, Sebastian; Bonnet, Philippe (2013). "COSMGrid: Configurable, off-the-shelf micro grid". 2013 IEEE Global Humanitarian Technology Conference (GHTC). pp. 96–101. doi:10.1109/GHTC.2013.6713662. ISBN   978-1-4799-2402-8. S2CID   19202084.
  65. Stadler, Michael (2018). "A flexible low cost PV/EV microgrid controller concept based on a Raspberry Pi" (PDF). Center for Energy and innovative Technologies.
  66. UNDP Yemen wins acclaimed international Ashden Awards for Humanitarian Energy
  67. Joel Spaes (July 3, 2020). "Harmon'Yeu, première communauté énergétique à l'Île d'Yeu, signée Engie". www.pv-magazine.fr. Retrieved January 27, 2021.
  68. Nabil Wakim (December 16, 2020). "A L'Ile-d'Yeu, soleil pour tous… ou presque". www.lemonde.fr. Retrieved January 27, 2021.
  69. Buevich, Maxim; Schnitzer, Dan; Escalada, Tristan; Jacquiau-Chamski, Arthur; Rowe, Anthony (2014). "Fine-grained remote monitoring, control and pre-paid electrical service in rural microgrids". IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks. pp. 1–11. doi:10.1109/IPSN.2014.6846736. ISBN   978-1-4799-3146-0. S2CID   8593041.
  70. "World Bank Report".
  71. Buevich, Maxim; Zhang, Xiao; Schnitzer, Dan; Escalada, Tristan; Jacquiau-Chamski, Arthur; Thacker, Jon; Rowe, Anthony (2015-01-01). "Short Paper: Microgrid Losses". Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. BuildSys '15. pp. 95–98. doi:10.1145/2821650.2821676. ISBN   9781450339810. S2CID   2742485.
  72. Kirubi, et al. “Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya.” World Development, vol. 37, no. 7, 2009, pp. 1208–1221.
  73. "Microgrid at Stone Edge Farm Wins California Environmental Honor". Microgrid Knowledge. 2018-01-18. Retrieved 2018-06-28.
  74. "Stone Edge Farm — A Sandbox For Microgrid Development | CleanTechnica". cleantechnica.com . 2017-11-24. Retrieved 2018-06-28.