In electronics, a micropup is a style of triode vacuum tube (valve) developed by the British General Electric Company (GEC) during World War II for use at very high frequencies such as those used in radar. The first micropup, the VT90, was introduced in 1939 and capable of operating at wavelengths as low as 25 cm, although at low power. The VT90 was much more widely used in a broad variety of radars operating in the 1.5 m band, around 200 MHz, which remained in widespread use for the rest of the war. Improved versions like the NT99 of 1941 allowed operations at 50 cm, or 600 MHz, leading to a series of new radar sets. These saw less use as the introduction of production-quality cavity magnetrons the same year led to microwave-frequency radars that outperformed the best micropups.
Key to the micropup design is the development of methods to seal glass directly to metal, allowing the construction of mixed-material vacuum chambers. Previously, tubes were all-glass and the need to limit heating of the glass led to very large designs known as doorknobs or acorns which spread out the heat. In the micropup, glass portions maintained the vacuum in the low-heat sections of the tube, and the active area, in the middle, was made of copper with metal fins that were brazed to the outside of the cylinder to improve heat dissipation, resulting in a design that looks somewhat like the cylinders in an air-cooled aviation engine. The much greater heat handling allowed the tubes to operate at much higher power levels. [1]
The active section of the tube was similar to other designs of the era. The grid was a wire mesh cylinder, known alternatively as a "squirrel cage" or "parrot cage", was positioned just inside the anode and supported by a metal rod running out one end of the tube and held in position by one of the two glass tubes. The rod ran out through the end of glass enclosure and acted as the grid electrode connection. The cathode was supported by a glass disk inside the anode, with wires running the opposite direction and out through the second glass tube. A second wire on this end connected to the cathode heater. The anode, which was exposed outside of the tube, was connected to directly. [1]
There is a dependance between the physical size of the tube that puts a limit on the minimum time it takes for the electrons to travel from the cathode to the anode, and this results in a maximum frequency that the tube can operate at. The micropup's large physical dimensions would normally result in a low-frequency tube, but this was overcome by operating at very high voltages to speed up the motion of the electrons. [2]
The first models, the VT90s, could be operated at very short wavelengths (for the era), as low as 25 cm, or 1,200 MHz, but only at very low power levels of a few hundred watts per pulse. At 50 cm, 600 MHz, this was improved to the kilowatt range, and at 1.5 m, 200 MHz they reached 10 kW. [1] As power level is more important for basic radar applications, the 1.5 m band became widely used in early-war British sets, including their Airborne Interception radars, Air-Sea Vessel radars Chain Home Low and AMES Type 7 anti-aircraft radars, and several Royal Navy sets. A 50 cm radar set using micropup was used by HMS Suffolk to track movements of the Bismarck. [3]
GEC continued improving the design, with the next major version being the NT99 (known to the military as the CV92) which appeared in mid-1941. This greatly reduced the length of the glass tube and metal post holding the grid, resulting in a stronger design, allowing it to use a larger cathode and to place the components closer together. This allowed the operating frequencies to be increased, and could operate at the same power levels as the VT90 at 600 MHz, leading to a series of radars operating at this frequency. The NT99 also introduced a new oxide coated cathode which greatly improved the electron emission and led to higher efficiency overall. RCA made a version known as the 4C28 that they used in the SHORAN system. [1]
Although widely used in "metre-band" radar systems, the cavity magnetron was able to produce significant power at much higher frequencies, as radar systems developed during the war. [4]
A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a frame of video on an analog television set (TV), digital raster graphics on a computer monitor, or other phenomena like radar targets. A CRT in a TV is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.
Cathode rays or electron beams (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to electrons emitted from the cathode. They were first observed in 1859 by German physicist Julius Plücker and Johann Wilhelm Hittorf, and were named in 1876 by Eugen Goldstein Kathodenstrahlen, or cathode rays. In 1897, British physicist J. J. Thomson showed that cathode rays were composed of a previously unknown negatively charged particle, which was later named the electron. Cathode-ray tubes (CRTs) use a focused beam of electrons deflected by electric or magnetic fields to render an image on a screen.
A cathode is the electrode from which a conventional current leaves a polarized electrical device such as a lead-acid battery. This definition can be recalled by using the mnemonic CCD for Cathode Current Departs. A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For example, the end of a household battery marked with a + (plus) is the cathode.
The cavity magnetron is a high-power vacuum tube used in early radar systems and subsequently in microwave ovens and in linear particle accelerators. A cavity magnetron generates microwaves using the interaction of a stream of electrons with a magnetic field, while moving past a series of cavity resonators, which are small, open cavities in a metal block. Electrons pass by the cavities and cause microwaves to oscillate within, similar to the functioning of a whistle producing a tone when excited by an air stream blown past its opening. The resonant frequency of the arrangement is determined by the cavities' physical dimensions. Unlike other vacuum tubes, such as a klystron or a traveling-wave tube (TWT), the magnetron cannot function as an amplifier for increasing the intensity of an applied microwave signal; the magnetron serves solely as an electronic oscillator generating a microwave signal from direct current electricity supplied to the vacuum tube.
A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention helped make amplified radio technology and long-distance telephony possible. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.
A vacuum tube, electron tube, valve, or tube is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.
A Nixie tube, or cold cathode display, is an electronic device used for displaying numerals or other information using glow discharge.
A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids, and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.
A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian, which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, radar transmitters, and to generate the drive power for modern particle accelerators.
The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).
An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast to other sources of ionizing radiation, X-rays are only produced as long as the X-ray tube is energized. X-ray tubes are also used in CT scanners, airport luggage scanners, X-ray crystallography, material and structure analysis, and for industrial inspection.
A plate, usually called anode in Britain, is a type of electrode that forms part of a vacuum tube. It is usually made of sheet metal, connected to a wire which passes through the glass envelope of the tube to a terminal in the base of the tube, where it is connected to the external circuit. The plate is given a positive potential, and its function is to attract and capture the electrons emitted by the cathode. Although it is sometimes a flat plate, it is more often in the shape of a cylinder or flat open-ended box surrounding the other electrodes.
In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element. The heating element is usually an electrical filament heated by a separate electric current passing through it. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area. Cold cathodes rely on field electron emission or secondary electron emission from positive ion bombardment, and do not require heating. There are two types of hot cathode. In a directly heated cathode, the filament is the cathode and emits the electrons. In an indirectly heated cathode, the filament or heater heats a separate metal cathode electrode which emits the electrons.
Albert Wallace Hull was an American physicist and electrical engineer who made contributions to the development of vacuum tubes, and invented the magnetron. He was a member of the National Academy of Sciences.
A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.
The inductive output tube (IOT) or klystrode is a variety of linear-beam vacuum tube, similar to a klystron, used as a power amplifier for high frequency radio waves. It evolved in the 1980s to meet increasing efficiency requirements for high-power RF amplifiers in radio transmitters. The primary commercial use of IOTs is in UHF television transmitters, where they have mostly replaced klystrons because of their higher efficiencies and smaller size. IOTs are also used in particle accelerators. They are capable of producing power output up to about 30 kW continuous and 7 MW pulsed and power gains of 20–23 dB at frequencies up to about a gigahertz.
The Barkhausen–Kurz tube, also called the retarding-field tube, reflex triode, B–K oscillator, and Barkhausen oscillator was a high frequency vacuum tube electronic oscillator invented in 1920 by German physicists Heinrich Georg Barkhausen and Karl Kurz. It was the first oscillator that could produce radio power in the ultra-high frequency (UHF) portion of the radio spectrum, above 300 MHz. It was also the first oscillator to exploit electron transit time effects. It was used as a source of high frequency radio waves in research laboratories, and in a few UHF radio transmitters through World War 2. Its output power was low which limited its applications. However it inspired research that led to other more successful transit time tubes such as the klystron, which made the low power Barkhausen-Kurz tube obsolete.
Sir John Turton Randall, was an English physicist and biophysicist, credited with radical improvement of the cavity magnetron, an essential component of centimetric wavelength radar, which was one of the keys to the Allied victory in the Second World War. It is also the key component of microwave ovens.
The VT-158, also known as the Zahl tube, was a vacuum tube invented by American physicist Harold A. Zahl in the 1930s and used during World War II and the Korean War. It allowed the radar technology at the time to detect low-flying planes by generating enough power to produce ultrahigh frequency energy.