The Mid-Piacenzian Warm Period (mPWP) (prior to 2009 known as the Middle Pliocene Warm Period ), or the Pliocene Thermal Maximum, was an interval of warm climate during the Pliocene epoch that lasted from 3.3 to 3.0 million years ago (Ma). [1]
The global average temperature in the mid-Pliocene was 2–3 °C higher than today, [2] global sea level 25 meters higher, [3] and the Northern Hemisphere ice sheet was ephemeral before the onset of extensive glaciation over Greenland that occurred in the late Pliocene around 3 Ma. [4] Near-surface permafrost extent was substantially lower relative to the present. [5] Global precipitation was marginally increased by 0.09 mm/yr according to CCSM4 simulations. [6] Annual Northern Hemisphere Hadley circulation was weakened, but annual Southern Hemisphere Hadley circulation was enhanced. [7] As during the Quaternary glaciation, glacial-interglacial cycles existed during the mPWP and it was not a uniform and stable climatic interval. [8]
Polar amplification during the mPWP was considerable. [9] The mean annual temperature (MAT) of eastern interior Alaska was about 7-9 °C higher than its present day MAT of -6.4 °C. [10] Palynological evidence from the Yermak Plateau in the Arctic Ocean shows that the thermophilic and moist boreal Tsuga-Thuja-Cupressaceae-Betula-Ilex community became dominant in the Arctic during the mPWP. [11] At the lagerstatte of Camp del Ninots in northeastern Spain, a MAT of 14.3 ± 2.6°C and a mean annual precipitation (MAP) of 846.8 ± 165.4 mm prevailed. [12] The East Asian Winter Monsoon (EAWM) strengthened during the mPWP. [13] The influence of the East Asian Summer Monsoon (EASM) did not extend as far into the interior of East Asia as it does today, causing a much drier climate to occur in the Chinese Loess Plateau relative to the present day. [14] In the Nihewan Basin, a stable and warm climate predominated from 3.58 Ma to 3.31 Ma. From 3.31 Ma to 3.10 Ma, the warmth continued but with greater instability, with three major cool events occurring during this interval. After 3.10 Ma, the region's climate cooled significantly. [15] In the Qaidam Basin, annual precipitation was about ten times higher than in the present, [16] and it varied in 20-kyr precessional cycles and was likely related to the fluctuation of the EASM in response to Antarctic ice sheet dynamics and insolation forcing. [17] The Kuroshio Current Extension (KCE) shifted northwards. [18] The South Asian Summer Monsoon (SASM) became strengthened on both a zonal and meridional level. [19] In southern Africa, summer and winter precipitation zones shifted poleward by ∼1°, while precipitation was reduced by about 0.5 mm/day. [20] The coast of Ecuador became drier. [21] Subtropical South Africa became dominated by fynbos and Afrotemperate forest vegetation. [22]
Carbon dioxide concentration during the Middle Pliocene has been estimated at around 400 ppmv from 13C/12C ratio in organic marine matter [23] and stomatal density of fossilised leaves, [24] although lower estimates of between 330 and 394 ppm over the course of the whole mPWP and 391 ppm in the KM5c interglacial, during the warmest phase of the mPWP, have been given. [25]
The mPWP is considered a potential analogue of future climate. [26] [27] [28] The intensity of the sunlight reaching the Earth, the global geography, and carbon dioxide concentrations were similar to present. Furthermore, many mid-Pliocene species are extant, helping calibrate paleotemperature proxies. Model simulations of mid-Pliocene climate produce warmer conditions at middle and high latitudes, as much as 10–20 °C warmer than today above 70°N. They also indicate little temperature variation in the tropics. Model-based biomes are generally consistent with Pliocene palaeobotanical data indicating a northward shift of the tundra and taiga and an expansion of savanna and warm-temperate forest in Africa and Australia. [29] The increased intensity of tropical cyclones during the mPWP has been cited as evidence that intensification of such storms will occur as anthropogenic global warming continues. [30]
The Eocene is a geological epoch that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the Paleogene Period in the modern Cenozoic Era. The name Eocene comes from the Ancient Greek Ἠώς and καινός and refers to the "dawn" of modern ('new') fauna that appeared during the epoch.
The Holocene is the current geological epoch, beginning approximately 11,700 years ago. It follows the Last Glacial Period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene is an interglacial period within the ongoing glacial cycles of the Quaternary, and is equivalent to Marine Isotope Stage 1.
The Miocene is the first geological epoch of the Neogene Period and extends from about 23.03 to 5.333 million years ago (Ma). The Miocene was named by Scottish geologist Charles Lyell; the name comes from the Greek words μείων and καινός and means "less recent" because it has 18% fewer modern marine invertebrates than the Pliocene has. The Miocene followed the Oligocene and preceded the Pliocene.
The Neogene is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period 23.03 million years ago (Mya) to the beginning of the present Quaternary Period 2.58 million years ago. It is the second period of the Cenozoic and the eleventh period of the Phanerozoic. The Neogene is sub-divided into two epochs, the earlier Miocene and the later Pliocene. Some geologists assert that the Neogene cannot be clearly delineated from the modern geological period, the Quaternary. The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes (1815–1868). The earlier term Tertiary Period was used to define the span of time now covered by Paleogene and Neogene and, despite no longer being recognized as a formal stratigraphic term, "Tertiary" still sometimes remains in informal use.
The Pliocene is the epoch in the geologic time scale that extends from 5.33 to 2.58 million years ago (Ma). It is the second and most recent epoch of the Neogene Period in the Cenozoic Era. The Pliocene follows the Miocene Epoch and is followed by the Pleistocene Epoch. Prior to the 2009 revision of the geologic time scale, which placed the four most recent major glaciations entirely within the Pleistocene, the Pliocene also included the Gelasian Stage, which lasted from 2.59 to 1.81 Ma, and is now included in the Pleistocene.
The Younger Dryas was a period in Earth's geologic history that occurred circa 12,900 to 11,700 years Before Present (BP). It is primarily known for the sudden or "abrupt" cooling in the Northern Hemisphere, when the North Atlantic Ocean cooled and annual air temperatures decreased by ~3 °C (5.4 °F) over North America, 2–6 °C (3.6–10.8 °F) in Europe and up to 10 °C (18 °F) in Greenland, in a few decades. Cooling in Greenland was particularly rapid, taking place over just 3 years or less. At the same time, the Southern Hemisphere experienced warming. This period ended as rapidly as it began, with dramatic warming over ~50 years, which transitioned the Earth from the glacial Pleistocene epoch into the current Holocene.
The Last Glacial Maximum (LGM), also referred to as the Last Glacial Coldest Period, was the most recent time during the Last Glacial Period where ice sheets were at their greatest extent 26,000 and 20,000 years ago. Ice sheets covered much of Northern North America, Northern Europe, and Asia and profoundly affected Earth's climate by causing a major expansion of deserts, along with a large drop in sea levels.
The Holocene Climate Optimum (HCO) was a warm period in the first half of the Holocene epoch, that occurred in the interval roughly 9,500 to 5,500 years BP, with a thermal maximum around 8000 years BP. It has also been known by many other names, such as Altithermal, Climatic Optimum, Holocene Megathermal, Holocene Optimum, Holocene Thermal Maximum, Holocene global thermal maximum, Hypsithermal, and Mid-Holocene Warm Period.
The Piacenzian is in the international geologic time scale the upper stage or latest age of the Pliocene. It spans the time between 3.6 ± 0.005 Ma and 2.58 Ma. The Piacenzian is after the Zanclean and is followed by the Gelasian.
The Chibanian, more widely known as Middle Pleistocene, is an age in the international geologic timescale or a stage in chronostratigraphy, being a division of the Pleistocene Epoch within the ongoing Quaternary Period. The Chibanian name was officially ratified in January 2020. It is currently estimated to span the time between 0.770 Ma and 0.129 Ma, also expressed as 770–126 ka. It includes the transition in palaeoanthropology from the Lower to the Middle Paleolithic over 300 ka.
The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma and is ongoing. Although geologists describe this entire period up to the present as an "ice age", in popular culture this term usually refers to the most recent glacial period, or to the Pleistocene epoch in general. Since Earth still has polar ice sheets, geologists consider the Quaternary glaciation to be ongoing, though currently in an interglacial period.
The Middle Miocene Climatic Transition (MMCT) was a relatively steady period of climatic cooling that occurred around the middle of the Miocene, roughly 14 million years ago (Ma), during the Langhian stage, and resulted in the growth of ice sheet volumes globally, and the reestablishment of the ice of the East Antarctic Ice Sheet (EAIS). The term Middle Miocene disruption, alternatively the Middle Miocene extinction or Middle Miocene extinction peak, refers to a wave of extinctions of terrestrial and aquatic life forms that occurred during this climatic interval. This period was preceded by the Middle Miocene Climatic Optimum (MMCO), a period of relative warmth from 18 to 14 Ma. Cooling that led to the Middle Miocene disruption is primarily attributed CO2 being pulled out of the Earth's atmosphere by organic material before becoming caught in different locations like the Monterey Formation. These may have been amplified by changes in oceanic and atmospheric circulation due to continental drift. Additionally, orbitally paced factors may also have played a role.
Cyclonic Niño is a climatological phenomenon that has been observed in climate models where tropical cyclone activity is increased. Increased tropical cyclone activity mixes ocean waters, introducing cooling in the upper layer of the ocean that quickly dissipates and warming in deeper layers that lasts considerably more, resulting in a net warming of the ocean.
The African humid period is a climate period in Africa during the late Pleistocene and Holocene geologic epochs, when northern Africa was wetter than today. The covering of much of the Sahara desert by grasses, trees and lakes was caused by changes in the Earth's axial tilt; changes in vegetation and dust in the Sahara which strengthened the African monsoon; and increased greenhouse gases. During the preceding Last Glacial Maximum, the Sahara contained extensive dune fields and was mostly uninhabited. It was much larger than today, and its lakes and rivers such as Lake Victoria and the White Nile were either dry or at low levels. The humid period began about 14,600–14,500 years ago at the end of Heinrich event 1, simultaneously to the Bølling–Allerød warming. Rivers and lakes such as Lake Chad formed or expanded, glaciers grew on Mount Kilimanjaro and the Sahara retreated. Two major dry fluctuations occurred; during the Younger Dryas and the short 8.2 kiloyear event. The African humid period ended 6,000–5,000 years ago during the Piora Oscillation cold period. While some evidence points to an end 5,500 years ago, in the Sahel, Arabia and East Africa, the end of the period appears to have taken place in several steps, such as the 4.2-kiloyear event.
The Medieval Warm Period (MWP), also known as the Medieval Climate Optimum or the Medieval Climatic Anomaly, was a time of warm climate in the North Atlantic region that lasted from about 950 CE to about 1250 CE. Climate proxy records show peak warmth occurred at different times for different regions, which indicate that the MWP was not a globally uniform event. Some refer to the MWP as the Medieval Climatic Anomaly to emphasize that climatic effects other than temperature were also important.
The Mid-Pleistocene Transition (MPT), also known as the Mid-Pleistocene Revolution (MPR), is a fundamental change in the behaviour of glacial cycles during the Quaternary glaciations. The transition lasted around 550,000 years, from 1.25 million years ago until 0.7 million years ago approximately, in the Pleistocene epoch. Before the MPT, the glacial cycles were dominated by a 41,000-year periodicity with low-amplitude, thin ice sheets, and a linear relationship to the Milankovitch forcing from axial tilt. Because of this, sheets were more dynamic during the Early Pleistocene. After the MPT there have been strongly asymmetric cycles with long-duration cooling of the climate and build-up of thick ice sheets, followed by a fast change from extreme glacial conditions to a warm interglacial. This led to less dynamic ice sheets. Interglacials before the MPT had lower levels of atmospheric carbon dioxide compared to interglacials after the MPT. One of the MPT's effects was causing ice sheets to become higher in altitude and less slippery compared to before. The MPT greatly increased the reservoirs of hydrocarbons locked up as permafrost methane or methane clathrate during glacial intervals. This led to larger methane releases during deglaciations. The cycle lengths have varied, with an average length of approximately 100,000 years.
Bette Otto-Bliesner is an earth scientist known for her modeling of Earth's past climate and its changes over different geological eras.
The Early Eocene Climatic Optimum (EECO), also referred to as the Early Eocene Thermal Maximum (EETM), was a period of extremely warm greenhouse climatic conditions during the Eocene epoch. The EECO represented the hottest sustained interval of the Cenozoic era and one of the hottest periods in all of Earth's history.
The Middle Miocene Climatic Optimum (MMCO), sometimes referred to as the Middle Miocene Thermal Maximum (MMTM), was an interval of warm climate during the Miocene epoch, specifically the Burdigalian and Langhian stages.
Gallogoral is an extinct genus of caprine that lived in Europe during the Pliocene and Pleistocene epochs.