Missing square puzzle

Last updated
Animation of the missing square puzzle, showing the two arrangements of the pieces and the "missing" square Missing Square Animation.gif
Animation of the missing square puzzle, showing the two arrangements of the pieces and the "missing" square
Both "total triangles" are in a perfect 13x5 grid; and both the "component triangles", the blue in a 5x2 grid and the red in an 8x3 grid. Missing square puzzle-AB.svg
Both "total triangles" are in a perfect 13×5 grid; and both the "component triangles", the blue in a 5×2 grid and the red in an 8×3 grid.

The missing square puzzle is an optical illusion used in mathematics classes to help students reason about geometrical figures; or rather to teach them not to reason using figures, but to use only textual descriptions and the axioms of geometry. It depicts two arrangements made of similar shapes in slightly different configurations. Each apparently forms a 13×5 right-angled triangle, but one has a 1×1 hole in it.

Contents

Solution

What the "magician presentation" does not show. The angles of the hypotenuses aren't the same: they are not similar triangles. It is fairly trivial to prove that the triangles must be dissimilar for this form of the puzzle to work in the plane. Missing-square-puzzle,showPart.png
What the "magician presentation" does not show. The angles of the hypotenuses aren't the same: they are not similar triangles. It is fairly trivial to prove that the triangles must be dissimilar for this form of the puzzle to work in the plane.
Splitting the thin parallelogram area (yellow) into little parts, and building a single unit square with them Paradoja del cuadrado perdido, area.png
Splitting the thin parallelogram area (yellow) into little parts, and building a single unit square with them

The key to the puzzle is the fact that neither of the 13×5 "triangles" is truly a triangle, nor would either truly be 13x5 if it were, because what appears to be the hypotenuse is bent. In other words, the "hypotenuse" does not maintain a consistent slope, even though it may appear that way to the human eye.

There are two distinct and "false hypotenuses" for the total triangle. Paradoja del cuadrado perdido 10,AB.png
There are two distinct and "false hypotenuses" for the total triangle.

A true 13×5 triangle cannot be created from the given component parts. The four figures (the yellow, red, blue and green shapes) total 32 units of area. The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = 13×5/2 = 32.5 units. However, the blue triangle has a ratio of 5:2 (=2.5), while the red triangle has the ratio 8:3 (≈2.667), so the apparent combined hypotenuse in each figure is actually bent. With the bent hypotenuse, the first figure actually occupies a combined 32 units, while the second figure occupies 33, including the "missing" square.

The amount of bending is approximately 1/28 unit (1.245364267°), which is difficult to see on the diagram of the puzzle, and was illustrated as a graphic. Note the grid point where the red and blue triangles in the lower image meet (5 squares to the right and two units up from the lower left corner of the combined figure), and compare it to the same point on the other figure; the edge is slightly under the mark in the upper image, but goes through it in the lower. Overlaying the "hypotenuses" from both figures results in a very thin parallelogram (represented with the four red dots in the above image) with an area of exactly one grid square (Pick's theorem gives 0 [1] + 4 [2] /2 1 = 1), which corresponds to the "missing" area.

Principle

More obvious using Fibonacci ratios 1:2 and 2:3 Missing square puzzle simple.svg
More obvious using Fibonacci ratios 1:2 and 2:3

According to Martin Gardner, [3] this particular puzzle was invented by a New York City amateur magician, Paul Curry, in 1953. However, the principle of a dissection paradox has been known since the start of the 16th century.

The integer dimensions of the parts of the puzzle (2, 3, 5, 8, 13) are successive Fibonacci numbers, which leads to the exact unit area in the thin parallelogram. Many other geometric dissection puzzles are based on a few simple properties of the Fibonacci sequence. [4]

Similar puzzles

A variant of Mitsunobu Matsuyama's "paradox" Missing square edit.gif
A variant of Mitsunobu Matsuyama's "paradox"
Sam Loyd's paradoxical dissection Loyd64-65-dis b.svg
Sam Loyd's paradoxical dissection

Sam Loyd's chessboard paradox demonstrates two rearrangements of an 8×8 square. In the "larger" rearrangement (the 5×13 rectangle in the image to the right), the gaps between the figures have a combined unit square more area than their square gaps counterparts, creating an illusion that the figures there take up more space than those in the original square figure. [5] In the "smaller" rearrangement (the shape below the 5×13 rectangle), each quadrilateral needs to overlap the triangle by an area of half a unit for its top/bottom edge to align with a grid line, resulting overall loss in one unit square area.

Mitsunobu Matsuyama's "paradox" uses four congruent quadrilaterals and a small square, which form a larger square. When the quadrilaterals are rotated about their centers they fill the space of the small square, although the total area of the figure seems unchanged. The apparent paradox is explained by the fact that the side of the new large square is a little smaller than the original one. If θ is the angle between two opposing sides in each quadrilateral, then the ratio of the two areas is given by sec2 θ. For θ = 5°, this is approximately 1.00765, which corresponds to a difference of about 0.8%.

Interactive SVG of The Disappearing Bicyclist - in the SVG file, move the pointer to rotate the disc The disappearing bicyclist vanishing puzzle.svg
Interactive SVG of The Disappearing Bicyclist in the SVG file, move the pointer to rotate the disc

A vanishing puzzle is a mechanical optical illusion showing different numbers of a certain object when parts of the puzzle are moved around. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Area</span> Size of a two-dimensional surface

Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of paint necessary to cover the surface with a single coat. It is the two-dimensional analogue of the length of a curve or the volume of a solid . Two different regions may have the same area ; by synecdoche, "area" sometimes is used to refer to the region, as in a "polygonal area".

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

<span class="mw-page-title-main">Tangram</span> Dissection puzzle

The tangram is a dissection puzzle consisting of seven flat polygons, called tans, which are put together to form shapes. The objective is to replicate a pattern generally found in a puzzle book using all seven pieces without overlap. Alternatively the tans can be used to create original minimalist designs that are either appreciated for their inherent aesthetic merits or as the basis for challenging others to replicate its outline. It is reputed to have been invented in China sometime around the late 18th century and then carried over to America and Europe by trading ships shortly after. It became very popular in Europe for a time, and then again during World War I. It is one of the most widely recognized dissection puzzles in the world and has been used for various purposes including amusement, art, and education.

<span class="mw-page-title-main">Impossible object</span> Type of optical illusion

An impossible object is a type of optical illusion that consists of a two-dimensional figure which is instantly and naturally understood as representing a projection of a three-dimensional object but cannot exist as a solid object. Impossible objects are of interest to psychologists, mathematicians and artists without falling entirely into any one discipline.

<span class="mw-page-title-main">Rectangle</span> Quadrilateral with four right angles

In Euclidean plane geometry, a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal ; or a parallelogram containing a right angle. A rectangle with four sides of equal length is a square. The term "oblong" is used to refer to a non-square rectangle. A rectangle with vertices ABCD would be denoted as  ABCD.

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

<span class="mw-page-title-main">Trapezoid</span> Convex quadrilateral with at least one pair of parallel sides

In geometry, a trapezoid in North American English, or trapezium in British English, is a quadrilateral that has one pair of parallel sides.

<span class="mw-page-title-main">Thales's theorem</span> On triangles inscribed in a circle with a diameter as an edge

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

<span class="mw-page-title-main">Special right triangle</span> Right triangle with a feature making calculations on the triangle easier

A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.

A dissection puzzle, also called a transformation puzzle or Richter puzzle, is a tiling puzzle where a set of pieces can be assembled in different ways to produce two or more distinct geometric shapes. The creation of new dissection puzzles is also considered to be a type of dissection puzzle. Puzzles may include various restraints, such as hinged pieces, pieces that can fold, or pieces that can twist. Creators of new dissection puzzles emphasize using a minimum number of pieces, or creating novel situations, such as ensuring that every piece connects to another with a hinge.

In geometry, a dissection problem is the problem of partitioning a geometric figure into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection. It is usually required that the dissection use only a finite number of pieces. Additionally, to avoid set-theoretic issues related to the Banach–Tarski paradox and Tarski's circle-squaring problem, the pieces are typically required to be well-behaved. For instance, they may be restricted to being the closures of disjoint open sets.

<span class="mw-page-title-main">Kepler triangle</span> Right triangle related to the golden ratio

A Kepler triangle is a special right triangle with edge lengths in geometric progression. The ratio of the progression is where is the golden ratio, and the progression can be written: , or approximately . Squares on the edges of this triangle have areas in another geometric progression, . Alternative definitions of the same triangle characterize it in terms of the three Pythagorean means of two numbers, or via the inradius of isosceles triangles.

<span class="mw-page-title-main">Trigonometry</span> Area of geometry, about angles and lengths

Trigonometry is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios such as sine.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Pythagorean tiling</span> Tiling by squares of two sizes

A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides. Many proofs of the Pythagorean theorem are based on it, explaining its name. It is commonly used as a pattern for floor tiles. When used for this, it is also known as a hopscotch pattern or pinwheel pattern, but it should not be confused with the mathematical pinwheel tiling, an unrelated pattern.

<span class="mw-page-title-main">Rep-tile</span> Shape subdivided into copies of itself

In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine.

A mesh is a representation of a larger geometric domain by smaller discrete cells. Meshes are commonly used to compute solutions of partial differential equations and render computer graphics, and to analyze geographical and cartographic data. A mesh partitions space into elements over which the equations can be solved, which then approximates the solution over the larger domain. Element boundaries may be constrained to lie on internal or external boundaries within a model. Higher-quality (better-shaped) elements have better numerical properties, where what constitutes a "better" element depends on the general governing equations and the particular solution to the model instance.

<span class="mw-page-title-main">Hooper's paradox</span> Optical illusion

Hooper's paradox is a falsidical paradox based on an optical illusion. A geometric shape with an area of 32 units is dissected into four parts, which afterwards get assembled into a rectangle with an area of only 30 units.

<span class="mw-page-title-main">Chessboard paradox</span> Mathematical paradox and logic puzzle

The chessboard paradox or paradox of Loyd and Schlömilch is a falsidical paradox based on an optical illusion. A chessboard or a square with a side length of 8 units is cut into four pieces. Those four pieces are used to form a rectangle with side lengths of 13 and 5 units. Hence the combined area of all four pieces is 64 area units in the square but 65 area units in the rectangle, this seeming contradiction is due an optical illusion as the four pieces don't fit exactly in the rectangle, but leave a small barely visible gap around the rectangle's diagonal. The paradox is sometimes attributed to the American puzzle inventor Sam Loyd (1841–1911) and the German mathematician Oskar Schlömilch (1832–1901).

<span class="mw-page-title-main">Vanishing puzzle</span> Optical illusion

A vanishing puzzle is a mechanical optical illusion comprising multiple pieces which can be rearranged to show different versions of a picture depicting several objects, the number of which depending on the arrangement of the pieces.

References

  1. number of interior lattice points
  2. number of boundary lattice points
  3. Gardner, Martin (1956). Mathematics Magic and magic. Dover. pp. 139–150. ISBN   9780486203355.
  4. Weisstein, Eric. "Cassini's Identity". Math World.
  5. "A Paradoxical Dissection". mathblag. 2011-08-28. Retrieved 2018-04-19.
  6. The Guardian, Vanishing Leprechaun, Disappearing Dwarf and Swinging Sixties Pin-up Girls – puzzles in pictures