This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Alcoholism is a chronic disease characterized by trouble controlling the consumption of alcohol, dependence (needing to consume more to achieve the same effects), and withdrawal upon rapid cessation of drinking. [1] According to ARDI reports approximately 88,000 people had alcohol-related deaths in the United States between the years of 2006 and 2010. [2] Furthermore, chronic alcohol use is consistently the third leading cause of death in the United States. [3] In consequence, research has sought to determine the factors responsible for the development and persistence of alcoholism. From this research, several molecular and epigenetic mechanisms have been discovered.
Alcoholism is characterized by a wide range of symptoms including compulsive alcohol seeking and consumption, tolerance (resistance to the effects of alcohol after repeated consumption), and withdrawal symptoms such as irritability, profuse sweating, and uncontrollable shaking upon rapid cessation of drinking. [4] There is not a specific test for diagnosing alcoholism; however, patient questionnaires and medical screenings for ailments typically associated with alcoholism, such as cirrhosis, heart problems, and pancreatitis, are often used as diagnostic tools. [5] [6] Several factors influence the development of alcoholism including genetic predisposition and environmental stressors such as grief, stress, depression, and anxiety. [7] In coordination with these factors, molecular and epigenetic mechanisms influence the progression toward alcoholism.
An increased propensity for alcoholism has been associated with stress-related anxiety and dysphoria, a state of general unease or dissatisfaction. The experience of various types of stress, including severe acute stress and chronic stress, can lead to the onset of dysphoria. Ethanol consumption promotes the release of dopamine into the nucleus accumbens (NAc) which is translated as a “reward". [8] Thus, to cope with negative emotions, individuals often turn to alcohol as a form of temporary self-medication. [9] Unfortunately, repeated ethanol use results in diminishing returns which prompts increased intake and dependence. [8] Research has and continues to investigate the molecular and epigenetic mechanisms underlying the downward spiral of alcoholism.
Several receptors directly interact with ethanol to promote a cascade of signaling. N-methyl-D-aspartate (NMDA) receptors are glutamate receptors particularly important in long-term potentiation in neurons. These receptors have been linked to ethanol use. Acute ethanol exposure, a brief period of ethanol use, inhibits Ca2+ flow through NMDA receptors in the hippocampus, the brain structure particularly important in memory formation. [10] A specific subunit of NMDA receptors, NR2B, shows particularly high sensitivity to ethanol as exemplified by increased NR2B expression in response to ethanol. [11] [12] [13] Another family of receptors, metabotropic glutamate receptors (mGluR), may also contribute by activating MAPK pathways and increasing intracellular Ca2+. Antagonism of mGluR5 showed a decrease in ethanol consumption suggesting mGluR5's role in alcoholism. [14] [15] [16] [17] Furthermore, voltage-gated calcium channels (VGCCs) were shown to be inhibited by ethanol resulting in reduced influx of Ca2+. [18] Yet, repeated ethanol intake, or chronic ethanol use, increases expression of the slow-inactivating L-type VGCCs known to sustain Ca2+ influx. [19] [20] When these channels are inhibited with an antagonist, ethanol consumption is reduced. [21] [22] [23]
Adenylyl cyclase (AC) plays a role in ethanol induced signaling pathways. Acute ethanol may increase AC activity resulting in increased levels of cAMP and altered activity of cAMP targets. [24] Of the cAMP targets, protein kinase A (PKA) has been associated with ethanol use. While acute ethanol use increases the activity of AC, chronic use tends to desensitize AC such that more simulation, increased ethanol consumption, is required to elicit the same response. [25] [26]
Ethanol transduction pathways involve several protein kinases known to phosphorylate substrates linked to alcoholism, namely cAMP response element-binding protein (CREB). CREB plays a central role in ethanol responses making its activation an important step in the pathway. Some of the kinase families currently linked to alcoholism are Ca2+/calmodulin-dependent protein kinases (CaMKs), protein kinase A (PKA), and mitogen-activated protein kinases (MAPKs). [27] [28] [29]
CREB may play a significant role in alcohol addiction. CREB is a transcription factor known to influence CNS functioning. This protein is activated by phosphorylation via the kinase families CaMK, PKA, and MAPK. [44] [45] [46] CREB binds a DNA sequence called CREB Response Element (CRE) in promoter regions and activates transcription via recruitment of CREB binding protein (CBP) and other transcription factors. [46] [47] [48] Some CREB-target genes, relevant for understanding alcoholism, include NPY, BDNF, Arc, and CRF. [39] [49] [50] [51] Levels of CREB and p-CREB (a highly phosphorylated CREB protein) play a dynamic role in the preference for, consumption of, and dependence on ethanol. When comparing alcohol-preferring (P) to –nonpreferring (NP) rats, lower levels of CREB, p-CREB, and CRE-DNA binding activity were observed in the CeA and MeA of P rats. [37] In conjunction, anxiety and ethanol consumption was higher in P rats. Acute ethanol exposure increases CREB and p-CREB and decreased anxiety in only P rats. [37] [45] Activation of PKA in the CeA increases levels of p-CREB while decreasing anxiety and ethanol consumption in P rats. The opposite occurs in NP rats when exposed to PKA inhibitor. [37] When rats are withdrawn from ethanol after chronic exposure they showed decreased levels of p-CREB, but not total CREB, in the CeA and MeA which manifests in anxiety-like behaviors. [30] Furthermore, acute ethanol use increases while chronic exposure stabilizes p-CREB levels in rat cerebellum and striatum. [52] [53] [54] Withdrawal following chronic exposure decreases levels of CRE-DNA binding and p-CREB. [31] [55]
The effects of ethanol on CREB are further manifested in CREB-target genes, namely BDNF, TrkB, Arc, NPY, and CRF.
Taken together, ethanol consumption influences a wide array of molecules. Many of these are involved in feed-forward mechanisms which further promote alcohol relapse and dependence.
In coordination with the molecules and pathways discussed, epigenetic mechanisms play a role in the development of alcoholism. These mechanisms include DNA methylation, histone acetylation and methylation, and (microRNA miRNA) action. Methylation of the DNA typically occurs at CpG sites, or a cysteine nucleotide followed by a guanine nucleotide in the 5’ to 3’ direction. These sites are common promoter and regulatory elements in mammals and methylation of cysteine residues typically inhibits these functions resulting in the repression of gene expression. DNA methylation is carried out by DNA methyltransferases (DNMTs) which are recruited to CpG sites by methyl-DNA binding proteins, such as MeCP2. Next, histones can be modified in several ways to increase or decrease gene expression. Histones are protein complexes used to package DNA into structures known as nucleosomes. The level of coiling of the DNA around histones is variable and influences transcription levels. Tight coiling, or heterochromatin, is associated with low gene expression or even silencing. Loose coiling, or euchromatin, is associated with higher levels of gene expression. Typically, acetylation of histones is associated with euchromatin formation. Acetyl groups are added by histone acetyltransferases (HATs), such as CBP. In opposition, histone deacetylases (HDACs) remove acetyl groups, typically leading to the formation of heterochromatin. HDACs are recruited by scaffolding proteins, such as RACK 1. HDAC inhibitors prevent HDAC functioning which promotes gene expression. Histone methylation, adding a methyl group to specific histone protein amino acids, can both increase or decrease gene expression depending on the histone protein, amino acid, and number of methyl groups used. Gene expression can also be inhibited post-transcriptionally by miRNA, double-stranded RNA, typically formed from hairpin structures, that is used to inhibit translation of proteins. After processing by the RNA interference (RNAi) molecules Drosha and Dicer, a single, guide-strand is loaded into the RNA induced silencing complex (RISC) which is used to bind mRNA. This binding suppresses protein synthesis and sometimes initiates mRNA degradation.
The epigenetic link to several ethanol related molecules has been established. As discussed before, acute ethanol exposure tends to increase CREB and p-CREB levels while withdrawal after chronic ethanol use is associated with decreased CREB and p-CREB. Also, CREB recruits the CBP, a HAT. Increased CREB and CBP activity at the BDNF promoter have been associated with decreased H3 methylation and increased H3 acetylation at lysine 9. [85] In concordance, histone acetylation, particularly at the BDNF promoter II, increases BDNF expression. [86] Similarly, BDNF exon IV expression following depolarization is increased and is associated with increased histone acetylation, reduced DNA methylation and reduced MeCP2 binding at the BDNF promoter. [87] These changes would tend to increase BDNF expression during acute ethanol exposure. Conversely, since CREB levels and subsequent CBP recruitment fall during withdrawal, these types of epigenetic changes would likely reverse upon withdrawal after chronic ethanol use. In particular, lack of CBP likely results in decreased acetylation of the BDNF promoter. Another layer of regulation modulates the activity of MeCP2 via the protein RACK1. RACK1 at H3 and H4 inhibits MeCP2 binding and promotes histone acetylation; thus, resulting in increased BDNF expression. [88] Chronic stress, often linked with a propensity to alcoholism, increases H3 methylation near BDNF promoters which inhibits transcription. To oppose this process, antidepressants have been shown to reduce histone methylation, increase H3 acetylation at the BDNF promoter, and reduce levels of HDAC5. [87] Recall that HDACs remove acetyl groups and are associated with heterochromatin formation. NR2B is also influenced by epigenetic mechanisms. Recall that this NDMA receptor subunit shows increased expression after ethanol exposure. Decreased CpG methylation of the NR2B gene is associated with chronic, but not acute, ethanol exposure. [89] Thus, the increase in NR2B expression in chronic ethanol exposed rats may be mediated by a more open chromatin structure. BK potassium channels are another target: miRNA-9 has been shown to target BK channel transcripts and may influence ethanol tolerance. This will be discussed in more detail in the tolerance section.
Finally, a link has been found between ethanol use and histone acetylation during development. After ethanol exposure, adolescent rats showed increased H3 and H4 acetylation in reward centers of the brain, such as the frontal cortex and nucleus accumbens. [90] This effect was not seen in adult rats. Thus, brain chromatin remodeling that increases gene expression in reward centers of developing brains may contribute to an increased propensity toward alcoholism upon and after ethanol exposure.
Tolerance is a lessened response to ethanol after repeated or prolonged ethanol exposure or consumption. In mammals, tolerance can form within minutes or over longer periods of time. [91] Ghezzi et al. (2014) speculated that tolerance occurs due to a homeostatic mechanism that resists environmental changes. However, homeostatis does not explain how tolerance influences alcohol addiction in many cases. Epigenetic alterations, including phosphorylation, methylation, acetylation, miRNA, and chromatin remodeling, may help explain the cases not explained by homeostatic mechanisms.
These epigenetic mechanisms have been studied in rodents. Acute tolerance was shown to be controlled by changes in the BK channel's phosphorylation state. [91] Acute tolerance is defined as ethanol tolerance that appears during an ethanol experience. Phosphorylation of BK channels by PKA is needed for ethanol potentiation of the channel. [92] Alcohol can change the phosphorylation patterns to characterize alcohol-tolerant BK channels. [93]
In addition, in rat magnocellular neurons it was shown that miRNA contributes to rapid and chronic ethanol tolerance by altering the expression of many proteins. [91] Rapid tolerance is defined as tolerance produced following a single ethanol exposure. Chronic tolerance is tolerance resulting from repeated exposure. Ethanol exposure upregulates miR-9, a miRNA that binds to some BK channel mRNA transcripts in their 3'-UTR. The binding of miR-9 causes the degradation of the mRNA. The BK channel mRNAs targeted by mir-9 are those that contain an alternatively-spliced exon that has been called ALCOREX. mRNAs that contain this exon produce BK channels that respond strongly to ethanol (high potentiation channels). On the other hand, BK channel mRNA that contains the alternative exon that has been named STREX is used to produce channels that are relatively ethanol insensitive (low potentiation channels). MiR-9 specifically degrades the transcripts encoding high potentiationchannels, leaving behind mostly alcohol-resistant channels. [93] The reason this mechanism is not used for acute tolerance is because tolerance depends on the modified protein synthesis, which takes time.
The effect histone acetylation on BK channel expression and alcohol tolerance has been studied by Ghezzi et al. (2014) using the Drosophila. The Drosophila gene that encodes BK channels is called slowpoke (slo). After ethanol sedation of the flies occurs, acetyl groups are added to histones within the slo promoter region. Acetylation exposes the slo promoter to CREB, which enhances slo protein expression. When the flies are exposed to alcohol again, it takes a shorter period of time to recover from sedation and net neural excitability is enhanced. This shows that a tolerance has been built due to increased slo product. This can also be accomplished by histone deacetylase inhibition that also causes increased slo gene expression. If the ethanol does not sedate the flies, or slo expression is not induced, tolerance does not occur. [92]
The effect the slo gene has on tolerance appears to differ between species. For example, when slo expression increases in C. elegans, the worms become more sensitive to ethanol as opposed to in Drosophilia where a tolerance is built. While the response to increased slo expression differs, the slo gene is involved with tolerance in every species. [92]
Whether or not tolerance and alcoholism are related is still under debate. Further work must be done in order to find a connection. The closest link between the two is that miRNA is able to regulate expression of multiple genes, and alcoholism is influenced by multiple genes. [94] If a relationship is found, studying predisposition to alcoholism will become a possibility, which could lead to therapeutic targets for alcoholism.
Treatments for alcoholism aim to end ethanol consumption and provide social support to prevent relapse. In some cases, sedating medications (benzodiazepines) may be necessary to prevent and/or reduce withdrawal symptoms. These benzodiazepines are only prescribed for a short period time to aid with withdrawal symptoms, for they too can become addictive. [95] Some other commonly used drugs on the market include:
These drug treatments are often coupled with social support through counseling, rehabilitation centers, and support groups. These social systems aid in dealing with the underlying social and psychological issues related to ethanol addiction.
Chronic alcohol use up-regulates HDACs through oxidative stress in the brain; this leads to decreased histone acetylation and decreased NPY expression, especially in the amygdala. The lower levels of NPY are associated with increased ethanol consumption and increased anxiety in periods of ethanol withdrawal. Trichostatin A (TSA) is an HDAC inhibitor which has been shown to reverse these histone acetylation and NPY deficits by preventing and reversing HDAC up-regulation. TSA acted as an anxiolytic as it was able to reduce anxiety associated with ethanol withdrawal. [99]
Suberanilohydroxamic Acid or SAHA is an HDAC inhibitor that reduces the motivation of rats to consume and/or seek ethanol, SAHA reduced binge drinking in rats by ending ethanol consumption periods sooner than in non-SAHA rats. SAHA was selective for reducing ethanol seeking but not sucrose seeking. [100]
In alcoholics, certain regions of the amygdala are associated with higher levels of DNA methyltransferases. 5-azacitidine (5-AzaC) in mice reduced excessive ethanol consumption. 5-AzaC decreases DNA methylation by inhibiting the activity of DNA methyltransferases. These results suggest ethanol consumption increases DNMT activity and that this histone modification can be reversed by DNMT inhibitors. [100]
In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase. PKA has several functions in the cell, including regulation of glycogen, sugar, and lipid metabolism. It should not be confused with 5'-AMP-activated protein kinase.
Dynorphins (Dyn) are a class of opioid peptides that arise from the precursor protein prodynorphin. When prodynorphin is cleaved during processing by proprotein convertase 2 (PC2), multiple active peptides are released: dynorphin A, dynorphin B, and α/β-neo-endorphin. Depolarization of a neuron containing prodynorphin stimulates PC2 processing, which occurs within synaptic vesicles in the presynaptic terminal. Occasionally, prodynorphin is not fully processed, leading to the release of “big dynorphin.” “Big Dynorphin” is a 32-amino acid molecule consisting of both dynorphin A and dynorphin B.
CREB-TF is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first described in 1987 as a cAMP-responsive transcription factor regulating the somatostatin gene.
Neuropeptide Y (NPY) is a 36 amino-acid neuropeptide that is involved in various physiological and homeostatic processes in both the central and peripheral nervous systems. NPY has been identified as the most abundant peptide present in the mammalian central nervous system, which consists of the brain and spinal cord. It is secreted alongside other neurotransmitters such as GABA and glutamate.
Neuropharmacology is the study of how drugs affect function in the nervous system, and the neural mechanisms through which they influence behavior. There are two main branches of neuropharmacology: behavioral and molecular. Behavioral neuropharmacology focuses on the study of how drugs affect human behavior (neuropsychopharmacology), including the study of how drug dependence and addiction affect the human brain. Molecular neuropharmacology involves the study of neurons and their neurochemical interactions, with the overall goal of developing drugs that have beneficial effects on neurological function. Both of these fields are closely connected, since both are concerned with the interactions of neurotransmitters, neuropeptides, neurohormones, neuromodulators, enzymes, second messengers, co-transporters, ion channels, and receptor proteins in the central and peripheral nervous systems. Studying these interactions, researchers are developing drugs to treat many different neurological disorders, including pain, neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, psychological disorders, addiction, and many others.
Urocortin 2 (Ucn2) is an endogenous peptide in the corticotrophin-releasing factor (CRF) family.
Protein c-Fos is a proto-oncogene that is the human homolog of the retroviral oncogene v-fos. It is encoded in humans by the FOS gene. It was first discovered in rat fibroblasts as the transforming gene of the FBJ MSV. It is a part of a bigger Fos family of transcription factors which includes c-Fos, FosB, Fra-1 and Fra-2. It has been mapped to chromosome region 14q21→q31. c-Fos encodes a 62 kDa protein, which forms heterodimer with c-jun, resulting in the formation of AP-1 complex which binds DNA at AP-1 specific sites at the promoter and enhancer regions of target genes and converts extracellular signals into changes of gene expression. It plays an important role in many cellular functions and has been found to be overexpressed in a variety of cancers.
Cyclic adenosine monophosphate Response Element Binding protein Binding Protein, also known as CREBBP or CBP or KAT3A, is a coactivator encoded by the CREBBP gene in humans, located on chromosome 16p13.3. CBP has intrinsic acetyltransferase functions; it is able to add acetyl groups to both transcription factors as well as histone lysines, the latter of which has been shown to alter chromatin structure making genes more accessible for transcription. This relatively unique acetyltransferase activity is also seen in another transcription enzyme, EP300 (p300). Together, they are known as the p300-CBP coactivator family and are known to associate with more than 16,000 genes in humans; however, while these proteins share many structural features, emerging evidence suggests that these two co-activators may promote transcription of genes with different biological functions.
Psychological dependence is a cognitive disorder that involves emotional–motivational withdrawal symptoms—e.g. anxiety and anhedonia—upon cessation of prolonged drug abuse or certain repetitive behaviors. It develops through frequent exposure to a psychoactive substance or behavior, though behavioral dependence is less talked about. The specific mechanism involves a neuronal counter-adaption, which could be mediated through changes in neurotransmittor activity or altered receptor expression. Environmental enrichment and physical activity can attenuate withdrawal symptoms. Psychological dependence is not to be confused with physical dependence, which induces physical withdrawal symptoms upon discontinuation of use. However, they are not mutually exclusive.
Protein fosB, also known as FosB and G0/G1 switch regulatory protein 3 (G0S3), is a protein that in humans is encoded by the FBJ murine osteosarcoma viral oncogene homolog B (FOSB) gene.
Calcium/calmodulin-dependent protein kinase kinase 2 is an enzyme that in humans is encoded by the CAMKK2 gene.
Ethanol is the type of alcohol found in alcoholic beverages. It is a volatile, flammable, colorless liquid that acts as a central nervous system depressant. Ethanol can impair different types of memory.
Cocaine addiction is the compulsive use of cocaine despite adverse consequences. It arises through epigenetic modification and transcriptional regulation of genes in the nucleus accumbens.
While researchers have found that moderate alcohol consumption in older adults is associated with better cognition and well-being than abstinence, excessive alcohol consumption is associated with widespread and significant brain lesions. Other data – including investigated brain-scans of 36,678 UK Biobank participants – suggest that even "light" or "moderate" consumption of alcohol by itself harms the brain, such as by reducing brain grey matter volume. This may imply that alternatives and generally aiming for lowest possible consumption could usually be the advisable approach.
Addiction vulnerability is an individual's risk of developing an addiction during his or her lifetime. There are a range of genetic and environmental risk factors for developing an addiction that vary across the population. Genetic and environmental risk factors each account for roughly half of an individual's risk for developing an addiction; the contribution from epigenetic risk factors to the total risk is unknown. Even in individuals with a relatively low genetic risk, exposure to sufficiently high doses of an addictive drug for a long period of time can result in an addiction. In other words, anyone can become an individual with a substance use disorder under particular circumstances. Research is working toward establishing a comprehensive picture of the neurobiology of addiction vulnerability, including all factors at work in propensity for addiction.
Metadoxine, also known as pyridoxine-pyrrolidone carboxylate, is a drug used to treat chronic and acute alcohol intoxication. Metadoxine accelerates alcohol clearance from the blood.
Alcohol, sometimes referred to by the chemical name ethanol, is a depressant drug that is the active ingredient in drinks such as beer, wine, and distilled spirits. It is one of the oldest and most commonly consumed recreational drugs, causing the characteristic effects of alcohol intoxication ("drunkenness"). Among other effects, alcohol produces happiness and euphoria, decreased anxiety, increased sociability, sedation, impairment of cognitive, memory, motor, and sensory function, and generalized depression of central nervous system function. Ethanol is only one of several types of alcohol, but it is the only type of alcohol that is found in alcoholic beverages or commonly used for recreational purposes; other alcohols such as methanol and isopropyl alcohol are significantly more toxic. A mild, brief exposure to isopropanol, being only moderately more toxic than ethanol, is unlikely to cause any serious harm. Methanol, being profoundly more toxic than ethanol, is lethal in quantities as small as 10–15 milliliters.
Epigenetics of depression is the study of how epigenetics contribute to depression.
Epigenetic effects of smoking concerns how epigenetics contributes to the deletrious effects of smoking. Cigarette smoking has been found to affect global epigenetic regulation of transcription across tissue types. Studies have shown differences in epigenetic markers like DNA methylation, histone modifications and miRNA expression between smokers and non-smokers. Similar differences exist in children whose mothers smoked during pregnancy. These epigenetic effects are thought to be linked to many of negative health effects associated with smoking.
Epigenetics of anxiety and stress–related disorders is the field studying the relationship between epigenetic modifications of genes and anxiety and stress-related disorders, including mental health disorders such as generalized anxiety disorder (GAD), post-traumatic stress disorder, obsessive-compulsive disorder (OCD), and more.
This article was produced as part of a project at The University of Texas at Austin.