Multiplication and repeated addition

Last updated

In mathematics education, there was a debate on the issue of whether the operation of multiplication should be taught as being a form of repeated addition. Participants in the debate brought up multiple perspectives, including axioms of arithmetic, pedagogy, learning and instructional design, history of mathematics, philosophy of mathematics, and computer-based mathematics.

Contents

Background of the debate

In the early 1990s Leslie Steffe proposed the counting scheme children use to assimilate multiplication into their mathematical knowledge. Jere Confrey contrasted the counting scheme with the splitting conjecture. Confrey suggested that counting and splitting are two separate, independent cognitive primitives. This sparked academic discussions in the form of conference presentations, articles and book chapters. [1]

The debate originated with the wider spread of curricula that emphasized scaling, zooming, folding and measuring mathematical tasks in the early years. Such tasks both require and support models of multiplication that are not based on counting or repeated addition. Debates around the question, "Is multiplication really repeated addition?" appeared on parent and teacher discussion forums in the mid-1990s. [ citation needed ]

Keith Devlin wrote a Mathematical Association of America column titled, "It Ain't No Repeated Addition" that followed up on his email exchanges with teachers, after he mentioned the topic briefly in an earlier article. [2] The column linked the academic debates with practitioner debates. It sparked multiple discussions in research and practitioner blogs and forums. Keith Devlin has continued to write on this topic. [3] [4] [5]

Pedagogical perspectives

From counting to multiplication

In typical mathematics curricula and standards, such as the Common Core State Standards Initiative, the meaning of the product of real numbers steps through a series of notions generally beginning with repeated addition and ultimately residing in scaling.

Once the natural (or whole) numbers have been defined and understood as a means to count, a child is introduced to the basic operations of arithmetic, in this order: addition, subtraction, multiplication and division. These operations, although introduced at a very early stage of a child's mathematics education, have a lasting impact on the development of number sense in students as advanced numeric abilities.

In these curricula, multiplication is introduced immediately after posing questions related to repeated addition, such as: "There are 3 bags of 8 apples each. How many apples are there in all? A student can do:

or choose the alternative

This approach is supported for several years of teaching and learning, and sets up the perception that multiplication is just a more efficient way of adding. Once 0 is brought in, it affects no significant change because

which is 0, and the commutative property would lead us also to define

Thus, repeated addition extends to the whole numbers (0, 1, 2, 3, 4, ...). The first challenge to the belief that multiplication is repeated addition appears when students start working with fractions. From the mathematical point of view, multiplication as repeated addition can be extended into fractions. For example,

literally calls for “one and three-fourths of the five-sixths.” This is later significant because students are taught that, in word problems, the word “of” usually indicates a multiplication. However, this extension is problematic for many students, who start struggling with mathematics when fractions are introduced .[ citation needed ] Moreover, the repeated addition model must be substantially modified when irrational numbers are brought into play.

Concerning these issues, mathematics educators have debated whether student difficulties with fractions and irrational numbers are exacerbated by viewing multiplication as repeated addition for a long time before these numbers are introduced, and relatedly whether it is acceptable to significantly modify rigorous mathematics for elementary education, leading children to believe statements that later turn out to be incorrect.

From scaling to multiplication

Multiplication can also be thought of as scaling. In the above animation, we see 3 being multiplied by 2, giving 6 as a result. Multiplication as scaling integers.gif
Multiplication can also be thought of as scaling. In the above animation, we see 3 being multiplied by 2, giving 6 as a result.

One theory of learning multiplication derives from the work of the Russian mathematics educators in the Vygotsky Circle which was active in the Soviet Union between the world wars. Their contribution is known as the splitting conjecture.

Another theory of learning multiplication derives from those studying embodied cognition, which examined the underlying metaphors for multiplication.

Together these investigations have inspired curricula with "inherently multiplicative" tasks for young children.[ citation needed ] Examples of these tasks include: elastic stretching, zoom, folding, projecting shadows, or dropping shadows. These tasks don't depend on counting, and cannot be easily conceptualized in terms of repeated addition.

Issues of debate related to these curricula include:

  • whether these tasks are accessible to all young children, or only to the best students;
  • whether children can achieve computational fluency if they see multiplication as scaling rather than repeated addition;
  • whether children may become confused by the two separate approaches to multiplication introduced closely together; and
  • whether scaling and repeated addition should be introduced separately, and if so, when and in what order?

What can be multiplied?

Multiplication is often defined for natural numbers, then extended to whole numbers, fractions, and irrational numbers. However, abstract algebra has a more general definition of multiplication as a binary operation on some objects that may or may not be numbers. Notably, one can multiply complex numbers, vectors, matrices, and quaternions. Some educators [ citation needed ] believe that seeing multiplication exclusively as repeated addition during elementary education can interfere with later understanding of these aspects of multiplication.

Models and metaphors that ground multiplication

In the context of mathematics education, models are concrete representations of abstract mathematical ideas that reflect some, or all, essential qualities of the idea. Models are often developed as physical or virtual manipulatives and curricular materials that accompany them.

A part of the debate about multiplication and repeated addition is the comparison of different models and their curricular materials. Different models may or may not support multiplication of different types of numbers; for instance the set model [6] in which numbers are presented as collections of objects, and multiplication as the union of multiple sets with the same number of objects in each, cannot be extended to multiplication of fractional or real numbers.

Different models may also be relevant to specific applications of arithmetic; for example, combination models come up in probability and biology.

Related Research Articles

<span class="mw-page-title-main">Arithmetic</span> Elementary branch of mathematics

Arithmetic is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today.

<span class="mw-page-title-main">Integer</span> Number in {..., –2, –1, 0, 1, 2, ...}

An integer is the number zero (0), a positive natural number or a negative integer with a minus sign. The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface Z or blackboard bold .

<span class="mw-page-title-main">Multiplication</span> Arithmetical operation

Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.

<span class="mw-page-title-main">Number</span> Used to count, measure, and label

A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any number using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels, for ordering, and for codes. In common usage, a numeral is not clearly distinguished from the number that it represents.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

<span class="mw-page-title-main">Division (mathematics)</span> Arithmetic operation

Division is one of the four basic operations of arithmetic, the ways that numbers are combined to make new numbers. The other operations are addition, subtraction, and multiplication.

<span class="mw-page-title-main">Dyadic rational</span> Fraction with denominator a power of two

In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.

<span class="mw-page-title-main">Multiplication table</span> Mathematical table

In mathematics, a multiplication table is a mathematical table used to define a multiplication operation for an algebraic system.

<span class="mw-page-title-main">Addition</span> Arithmetic operation

Addition is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or sum of those values combined. The example in the adjacent image shows a combination of three apples and two apples, making a total of five apples. This observation is equivalent to the mathematical expression "3 + 2 = 5".

<span class="mw-page-title-main">Subtraction</span> One of the four basic arithmetic operations

Subtraction is one of the four arithmetic operation along with addition, multiplication and division. Subtraction is an operation that represents removal of objects from a collection. For example, in the adjacent picture, there are 5 − 2 peaches—meaning 5 peaches with 2 taken away, resulting in a total of 3 peaches. Therefore, the difference of 5 and 2 is 3; that is, 5 − 2 = 3. While primarily associated with natural numbers in arithmetic, subtraction can also represent removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices.

<span class="mw-page-title-main">Division by zero</span> Class of mathematical expression

In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as , where a is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by 0, gives a ; thus, division by zero is undefined. Since any number multiplied by zero is zero, the expression is also undefined; when it is the form of a limit, it is an indeterminate form. Historically, one of the earliest recorded references to the mathematical impossibility of assigning a value to is contained in Anglo-Irish philosopher George Berkeley's criticism of infinitesimal calculus in 1734 in The Analyst.

A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one).

Theodorus of Cyrene was an ancient Greek mathematician who lived during the 5th century BC. The only first-hand accounts of him that survive are in three of Plato's dialogues: the Theaetetus, the Sophist, and the Statesman. In the former dialogue, he posits a mathematical theorem now known as the Spiral of Theodorus.

<span class="mw-page-title-main">Elementary arithmetic</span> Numbers and the basic operations on them

Elementary arithmetic is a branch of mathematics that deals with basic numerical operations such as addition, subtraction, multiplication, and division. It is a fundamental subject that forms the basis for more advanced mathematical concepts. Due to its low level of abstraction, elementary arithmetic is the most universally taught branch of mathematics.

In mathematics, an algebraic expression is an expression built up from constant algebraic numbers, variables, and the algebraic operations. For example, 3x2 − 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression:

Arithmetic is an elementary branch of mathematics that is widely used for tasks ranging from simple day-to-day counting to advanced science and business calculations.

Traditional mathematics was the predominant method of mathematics education in the United States in the early-to-mid 20th century. This contrasts with non-traditional approaches to math education. Traditional mathematics education has been challenged by several reform movements over the last several decades, notably new math, a now largely abandoned and discredited set of alternative methods, and most recently reform or standards-based mathematics based on NCTM standards, which is federally supported and has been widely adopted, but subject to ongoing criticism.

Investigations in Numbers, Data, and Space is a K–5 mathematics curriculum, developed at TERC in Cambridge, Massachusetts, United States. The curriculum is often referred to as Investigations or simply TERC. Patterned after the NCTM standards for mathematics, it is among the most widely used of the new reform mathematics curricula. As opposed to referring to textbooks and having teachers impose methods for solving arithmetic problems, the TERC program uses a constructivist approach that encourages students to develop their own understanding of mathematics. The curriculum underwent a major revision in 2005–2007.

<span class="mw-page-title-main">Rational number</span> Quotient of two integers

In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer. The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold

<span class="mw-page-title-main">Real number</span> Number representing a continuous quantity

In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion.

References

  1. Confrey, Jere; Maloney, Alan (2015-10-01). "A design research study of a curriculum and diagnostic assessment system for a learning trajectory on equipartitioning". ZDM. 47 (6): 919–932. doi:10.1007/s11858-015-0699-y. ISSN   1863-9704.
  2. Devlin, Keith (June 2008). "It Ain't No Repeated Addition". Mathematical Association of America. Retrieved 30 March 2012.
  3. Devlin, Keith (July–August 2008). "It's Still Not Repeated Addition". Mathematical Association of America. Retrieved 2 April 2012.
  4. Devlin, Keith (September 2008). "Multiplication and Those Pesky British Spellings". Mathematical Association of America. Retrieved 2 April 2012.
  5. Devlin, Keith (January 2011). "What Exactly is Multiplication?". Mathematical Association of America. Retrieved 2 April 2012.
  6. Lakoff, George; Nunez, Rafael (2000). Where mathematics comes from: How the embodied mind brings mathematics into being . Basic Books. ISBN   0-465-03771-2.