Myograph

Last updated
A myograph recording from a pendulum myograph after an induced contraction. The upper line (m) represents the curve traced by the end of the myograph lever in connection with a muscle after stimulation of the muscle by a single induction-shock. Hand-book of physiology (1892) (14578682169).jpg
A myograph recording from a pendulum myograph after an induced contraction. The upper line (m) represents the curve traced by the end of the myograph lever in connection with a muscle after stimulation of the muscle by a single induction-shock.

A myograph is any device used to measure the force produced by a muscle when under contraction. [1] Such a device is commonly used in myography, the study of the velocity and intensity of muscular contraction. [2]

Contents

A myograph can take several forms: for tubular structures such as blood vessels these include the pressure myograph (where a segment of a blood vessel is cannulated at either or both ends) and the wire myograph (where the blood vessel segment is threaded onto a pair of pins or wires); for skeletal muscle other devices such as the acceleromyograph can be used.

In pharmacology, myography is used to record muscle contraction in organ bath preparations. The related technique of electromyography (EMG) is used to measure the electrical activity of the muscle instead of force. In addition, there is an optomyography (OMG) technique that uses active near-infra-red optical sensors.

Wire Myograph

A wire myograph is a type of laboratory apparatus that can measure the contractility of luminal tissue segments smaller than 2mm in diameter. [3] [4] It is used by pharmacologists to measure the effect of test articles on blood pressure or airway contractility. [5]

History of the wire myograph

Diagrams of the first ever wire myograph were revealed by Mulvany & Halpern in their 1976 paper "Contractile properties of small arterial resistance vessels in [...] rats". [6] The group based the design of this apparatus on a technique developed by Bevan & Osher to measure arterial contractility ex vivo . [7] Development of the wire myograph was significant as it allowed researchers to more accurately estimate the effect of novel drugs on blood pressure for the first time. [5] [6]

Structure of the wire myograph

The structure of the wire myograph has not changed much since its invention in 1977. Tissues are mounted in the myograph bath via two wires threaded through their lumen. [3] These wires are attached to two opposing stainless steel jaws which secure tissue in place throughout the culture period. [3] Multi-myograph units can contain up to four separate tissue baths, allowing four different tissue segments to be cultured simultaneously.

Related Research Articles

<span class="mw-page-title-main">Blood pressure</span> Pressure exerted by circulating blood upon the walls of arteries

Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" refers to the pressure in a brachial artery, where it is most commonly measured. Blood pressure is usually expressed in terms of the systolic pressure over diastolic pressure in the cardiac cycle. It is measured in millimeters of mercury (mmHg) above the surrounding atmospheric pressure, or in kilopascals (kPa).

<span class="mw-page-title-main">Smooth muscle</span> Involuntary non-striated muscle

Smooth muscle is an involuntary non-striated muscle, so-called because it has no sarcomeres and therefore no striations. It is divided into two subgroups, single-unit and multiunit smooth muscle. Within single-unit muscle, the whole bundle or sheet of smooth muscle cells contracts as a syncytium.

<span class="mw-page-title-main">Lymph</span> Fluid that circulates throughout the lymphatic system

Lymph is the fluid that flows through the lymphatic system, a system composed of lymph vessels (channels) and intervening lymph nodes whose function, like the venous system, is to return fluid from the tissues to be recirculated. At the origin of the fluid-return process, interstitial fluid—the fluid between the cells in all body tissues—enters the lymph capillaries. This lymphatic fluid is then transported via progressively larger lymphatic vessels through lymph nodes, where substances are removed by tissue lymphocytes and circulating lymphocytes are added to the fluid, before emptying ultimately into the right or the left subclavian vein, where it mixes with central venous blood.

<span class="mw-page-title-main">Vasoconstriction</span> Narrowing of blood vessels due to the constriction of smooth muscle cells

Vasoconstriction is the narrowing of the blood vessels resulting from contraction of the muscular wall of the vessels, in particular the large arteries and small arterioles. The process is the opposite of vasodilation, the widening of blood vessels. The process is particularly important in controlling hemorrhage and reducing acute blood loss. When blood vessels constrict, the flow of blood is restricted or decreased, thus retaining body heat or increasing vascular resistance. This makes the skin turn paler because less blood reaches the surface, reducing the radiation of heat. On a larger level, vasoconstriction is one mechanism by which the body regulates and maintains mean arterial pressure.

<span class="mw-page-title-main">Microcirculation</span> Circulation of the blood in the smallest blood vessels

The microcirculation is the circulation of the blood in the smallest blood vessels, the microvessels of the microvasculature present within organ tissues. The microvessels include terminal arterioles, metarterioles, capillaries, and venules. Arterioles carry oxygenated blood to the capillaries, and blood flows out of the capillaries through venules into veins.

<span class="mw-page-title-main">Vasodilation</span> Widening of blood vessels

Vasodilation, also known as vasorelaxation, is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, which is the narrowing of blood vessels.

Uterine contractions are muscle contractions of the uterine smooth muscle that occur during the menstrual cycle and labour. Uterine contractions occur throughout the menstrual cycle in the non-pregnant state and throughout gestation.

<span class="mw-page-title-main">Lymphatic vessel</span> Tubular vessels that are involved in the transport of lymph and lymphocytes

The lymphatic vessels are thin-walled vessels (tubes), structured like blood vessels, that carry lymph. As part of the lymphatic system, lymph vessels are complementary to the cardiovascular system. Lymph vessels are lined by endothelial cells, and have a thin layer of smooth muscle, and adventitia that binds the lymph vessels to the surrounding tissue. Lymph vessels are devoted to the propulsion of the lymph from the lymph capillaries, which are mainly concerned with the absorption of interstitial fluid from the tissues. Lymph capillaries are slightly bigger than their counterpart capillaries of the vascular system. Lymph vessels that carry lymph to a lymph node are called afferent lymph vessels, and those that carry it from a lymph node are called efferent lymph vessels, from where the lymph may travel to another lymph node, may be returned to a vein, or may travel to a larger lymph duct. Lymph ducts drain the lymph into one of the subclavian veins and thus return it to general circulation.

<span class="mw-page-title-main">Haemodynamic response</span>

In haemodynamics, the body must respond to physical activities, external temperature, and other factors by homeostatically adjusting its blood flow to deliver nutrients such as oxygen and glucose to stressed tissues and allow them to function. Haemodynamic response (HR) allows the rapid delivery of blood to active neuronal tissues. The brain consumes large amounts of energy but does not have a reservoir of stored energy substrates. Since higher processes in the brain occur almost constantly, cerebral blood flow is essential for the maintenance of neurons, astrocytes, and other cells of the brain. This coupling between neuronal activity and blood flow is also referred to as neurovascular coupling.

Compliance is the ability of a hollow organ (vessel) to distend and increase volume with increasing transmural pressure or the tendency of a hollow organ to resist recoil toward its original dimensions on application of a distending or compressing force. It is the reciprocal of "elastance", hence elastance is a measure of the tendency of a hollow organ to recoil toward its original dimensions upon removal of a distending or compressing force.

<span class="mw-page-title-main">Baroreflex</span> Homeostatic mechanism in the body

The baroreflex orbaroreceptor reflex is one of the body's homeostatic mechanisms that helps to maintain blood pressure at nearly constant levels. The baroreflex provides a rapid negative feedback loop in which an elevated blood pressure causes the heart rate to decrease. Decreased blood pressure decreases baroreflex activation and causes heart rate to increase and to restore blood pressure levels. Their function is to sense pressure changes by responding to change in the tension of the arterial wall The baroreflex can begin to act in less than the duration of a cardiac cycle and thus baroreflex adjustments are key factors in dealing with postural hypotension, the tendency for blood pressure to decrease on standing due to gravity.

<span class="mw-page-title-main">Cardiac catheterization</span> Insertion of a catheter into a chamber or vessel of the heart

Cardiac catheterization is the insertion of a catheter into a chamber or vessel of the heart. This is done both for diagnostic and interventional purposes.

The myogenic mechanism is how arteries and arterioles react to an increase or decrease of blood pressure to keep the blood flow constant within the blood vessel. Myogenic response refers to a contraction initiated by the myocyte itself instead of an outside occurrence or stimulus such as nerve innervation. Most often observed in smaller resistance arteries, this 'basal' myogenic tone may be useful in the regulation of organ blood flow and peripheral resistance, as it positions a vessel in a preconstricted state that allows other factors to induce additional constriction or dilation to increase or decrease blood flow.

<span class="mw-page-title-main">Muscle</span> Basic biological tissue present in animals

Muscle is a soft tissue, one of the animal tissues that makes up the three different types of muscle. Muscle tissue gives skeletal muscles the ability to contract. Muscle is formed during embryonic development, in a process known as myogenesis. Muscle tissue contains special contractile proteins called actin and myosin which interact to cause movement. Among many other muscle proteins present are two regulatory proteins, troponin and tropomyosin.

Electrical impedance myography, or EIM, is a non-invasive technique for the assessment of muscle health that is based on the measurement of the electrical impedance characteristics of individual muscles or groups of muscles. The technique has been used for the purpose of evaluating neuromuscular diseases both for their diagnosis and for their ongoing assessment of progression or with therapeutic intervention. Muscle composition and microscopic structure change with disease, and EIM measures alterations in impedance that occur as a result of disease pathology. EIM has been specifically recognized for its potential as an ALS biomarker by Prize4Life, a 501(c)(3) nonprofit organization dedicated to accelerating the discovery of treatments and cures for ALS. The $1M ALS Biomarker Challenge focused on identifying a biomarker precise and reliable enough to cut Phase II drug trials in half. The prize was awarded to Dr. Seward Rutkove, chief, Division of Neuromuscular Disease, in the Department of Neurology at Beth Israel Deaconess Medical Center and Professor of Neurology at Harvard Medical School, for his work in developing the technique of EIM and its specific application to ALS. It is hoped that EIM as a biomarker will result in the more rapid and efficient identification of new treatments for ALS. EIM has shown sensitivity to disease status in a variety of neuromuscular conditions, including radiculopathy, inflammatory myopathy, Duchenne muscular dystrophy, and spinal muscular atrophy.

A plot of a system's pressure versus volume has long been used to measure the work done by the system and its efficiency. This analysis can be applied to heat engines and pumps, including the heart. A considerable amount of information on cardiac performance can be determined from the pressure vs. volume plot. A number of methods have been determined for measuring PV-loop values experimentally.

<span class="mw-page-title-main">Vascular remodelling in the embryo</span> Biological process

Vascular remodelling is a process which occurs when an immature heart begins contracting, pushing fluid through the early vasculature. The process typically begins at day 22, and continues to the tenth week of human embryogenesis. This first passage of fluid initiates a signal cascade and cell movement based on physical cues including shear stress and circumferential stress, which is necessary for the remodelling of the vascular network, arterial-venous identity, angiogenesis, and the regulation of genes through mechanotransduction. This embryonic process is necessary for the future stability of the mature vascular network.

<span class="mw-page-title-main">Organ bath</span> Experimental technique

An organ chamber, organ bath, or isolated tissue bath is a chamber in which isolated organs or tissues can be administered with drugs, or stimulated electrically, in order to measure their function. The tissue in the organ bath is typically oxygenated with carbogen and kept in a solution such as Tyrode's solution or lactated Ringer's solution. Historically, they have also been called gut baths.

Isolated organ perfusion technique is employed to precipitate an organ's perfusion and circulation that are independent/isolated from the body's systemic circulation for various purposes such as organ-localized chemotherapy, organ-targeted delivery of drug, gene or anything else, organ transplantation, and organ injury recovery. The technique has been widely studied in animal and human for decades. Before the implementation, the perfusion system will be selected and the process can be similar to organ bath. Isolated organ perfusion technique, nevertheless, is averagely conducted in vivo without leaving the organ alone as a whole out of the body.

<span class="mw-page-title-main">Arterial occlusion</span>

Arterial occlusion is a condition involving partial or complete blockage of blood flow through an artery. Arteries are blood vessels that carry oxygenated blood to body tissues. An occlusion of arteries disrupts oxygen and blood supply to tissues, leading to ischemia. Depending on the extent of ischemia, symptoms of arterial occlusion range from simple soreness and pain that can be relieved with rest, to a lack of sensation or paralysis that could require amputation.

References

  1. Blood, Douglas C.; Studdert, Virginia P. (Jan 15, 1999). Saunders Comprehensive Veterinary Dictionary . Saunders Ltd. ISBN   978-0-7020-2788-8.
  2. Urdang, Laurence (1981). -Ologies &- Isms: A Thematic Dictionary (2 ed.). Gale Research Co. ISBN   978-0-8103-1055-1.
  3. 1 2 3 Spiers, Angela; Padmanabhan, Neal (2005), Fennell, Jérôme P.; Baker, Andrew H. (eds.), "A Guide to Wire Myography", Hypertension: Methods and Protocols, Totowa, NJ: Humana Press, vol. 108, pp. 91–104, doi:10.1385/1-59259-850-1:091, ISBN   978-1-59259-850-2, PMID   16028678 , retrieved 2023-04-25
  4. Olson, K. R. (2011-01-01), "DESIGN AND PHYSIOLOGY OF ARTERIES AND VEINS | Physiology of Capacitance Vessels", in Farrell, Anthony P. (ed.), Encyclopedia of Fish Physiology, San Diego: Academic Press, pp. 1111–1118, ISBN   978-0-08-092323-9 , retrieved 2023-04-25
  5. 1 2 "The ultimate guide to wire myography [Protocol Included]". www.reprocell.com. Retrieved 2023-04-25.
  6. 1 2 Mulvany, M J; Halpern, W (July 1977). "Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats". Circulation Research. 41 (1): 19–26. doi: 10.1161/01.RES.41.1.19 . ISSN   0009-7330. PMID   862138. S2CID   1283485.
  7. Bevan, J. A.; Osher, J. V. (1972). "A direct method for recording tension changes in the wall of small blood vessels in vitro". Agents and Actions. 2 (5): 257–260. doi:10.1007/BF02087051. ISSN   0065-4299. PMID   4641160. S2CID   6905198.