N-Propyl-L-arginine

Last updated
N-Propyl-l-arginine
N-Propyl-L-arginine.png
Names
Other names
2-Amino-5-[(N'-propylcarbamimidoyl)amino]pentanoic acid[ citation needed ]
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C9H20N4O2/c1-2-5-12-9(11)13-6-3-4-7(10)8(14)15/h7H,2-6,10H2,1H3,(H,14,15)(H3,11,12,13) X mark.svgN
    Key: AOMXURITGZJPKB-UHFFFAOYSA-N X mark.svgN
  • CCCNC(=N)NCCCC(N)C(O)=O
Properties
C9H20N4O2
Molar mass 216.285 g·mol−1
log P 0.389
Acidity (pKa)2.512
Basicity (pKb)11.485
Related compounds
Related alkanoic acids
Related compounds
Acecarbromal
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

N-Propyl-l-arginine, or more properly NG-propyl-l-arginine (NPA), is a selective inhibitor of neuronal nitric oxide synthase (nNOS). [1]

  1. Zhang, Henry Q.; Fast, Walter; Marletta, Michael A.; Martasek, Pavel; Silverman, Richard B. (1997-11-01). "Potent and Selective Inhibition of Neuronal Nitric Oxide Synthase by N ω -Propyl- l -arginine". Journal of Medicinal Chemistry. 40 (24): 3869–3870. doi:10.1021/jm970550g. ISSN   0022-2623. PMID   9397167.


Related Research Articles

<span class="mw-page-title-main">Arginine</span> Amino acid

Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2) and both the amino and guanidino groups are protonated, resulting in a cation. Only the l-arginine (symbol Arg or R) enantiomer is found naturally. Arg residues are common components of proteins. It is encoded by the codons CGU, CGC, CGA, CGG, AGA, and AGG. The guanidine group in arginine is the precursor for the biosynthesis of nitric oxide. Like all amino acids, it is a white, water-soluble solid.

<span class="mw-page-title-main">Citrulline</span> Chemical compound

The organic compound citrulline is an α-amino acid. Its name is derived from citrullus, the Latin word for watermelon. Although named and described by gastroenterologists since the late 19th century, it was first isolated from watermelon in 1914 by Japanese researchers Yotaro Koga and Ryo Odake and further codified by Mitsunori Wada of Tokyo Imperial University in 1930. It has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. It is a key intermediate in the urea cycle, the pathway by which mammals excrete ammonia by converting it into urea. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase.

<span class="mw-page-title-main">Arginase</span> Manganese-containing enzyme

Arginase (EC 3.5.3.1, arginine amidinase, canavanase, L-arginase, arginine transamidinase) is a manganese-containing enzyme. The reaction catalyzed by this enzyme is:

Agmatine, also known as 4-aminobutyl-guanidine, was discovered in 1910 by Albrecht Kossel. It is a chemical substance which is naturally created from the amino acid arginine. Agmatine has been shown to exert modulatory action at multiple molecular targets, notably: neurotransmitter systems, ion channels, nitric oxide (NO) synthesis and polyamine metabolism and this provides bases for further research into potential applications.

<span class="mw-page-title-main">Nitric oxide synthase</span> Enzyme catalysing the formation of the gasotransmitter NO(nitric oxide)

Nitric oxide synthases (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS and nNOS. The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.

<span class="mw-page-title-main">Argininosuccinate synthase</span> Enzyme

Argininosuccinate synthase or synthetase is an enzyme that catalyzes the synthesis of argininosuccinate from citrulline and aspartate. In humans, argininosuccinate synthase is encoded by the ASS gene located on chromosome 9.

<span class="mw-page-title-main">Louis Ignarro</span> American pharmacologist

Louis José Ignarro is an American pharmacologist. For demonstrating the signaling properties of nitric oxide, he was co-recipient of the 1998 Nobel Prize in Physiology or Medicine with Robert F. Furchgott and Ferid Murad.

<span class="mw-page-title-main">Endothelial NOS</span> Protein and coding gene in humans

Endothelial NOS (eNOS), also known as nitric oxide synthase 3 (NOS3) or constitutive NOS (cNOS), is an enzyme that in humans is encoded by the NOS3 gene located in the 7q35-7q36 region of chromosome 7. This enzyme is one of three isoforms that synthesize nitric oxide (NO), a small gaseous and lipophilic molecule that participates in several biological processes. The other isoforms include neuronal nitric oxide synthase (nNOS), which is constitutively expressed in specific neurons of the brain and inducible nitric oxide synthase (iNOS), whose expression is typically induced in inflammatory diseases. eNOS is primarily responsible for the generation of NO in the vascular endothelium, a monolayer of flat cells lining the interior surface of blood vessels, at the interface between circulating blood in the lumen and the remainder of the vessel wall. NO produced by eNOS in the vascular endothelium plays crucial roles in regulating vascular tone, cellular proliferation, leukocyte adhesion, and platelet aggregation. Therefore, a functional eNOS is essential for a healthy cardiovascular system.

<span class="mw-page-title-main">NOS1</span> Protein-coding gene in the species Homo sapiens

Nitric oxide synthase 1 (neuronal), also known as NOS1, is an enzyme that in humans is encoded by the NOS1 gene.

<span class="mw-page-title-main">Dimethylargininase</span> Class of enzymes

In the field of enzymology, a dimethylargininase, also known as a dimethylarginine dimethylaminohydrolase (DDAH), is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">DYNLL1</span> Protein-coding gene in humans

Dynein light chain 1, cytoplasmic is a protein that in humans is encoded by the DYNLL1 gene.

<span class="mw-page-title-main">NOS1AP</span> Protein-coding gene in the species Homo sapiens

Nitric oxide synthase 1 adaptor protein (NOS1AP) also known as carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (CAPON) is a protein that in humans is encoded by the NOS1AP gene.

<span class="mw-page-title-main">7-Nitroindazole</span> Chemical compound

7-Nitroindazole, or 7-NI, is a heterocyclic small molecule containing an indazole ring that has been nitrated at the 7 position. Nitroindazole acts as a selective inhibitor for neuronal nitric oxide synthase, a hemoprotein enzyme that, in neuronal tissue, converts arginine to citrulline and nitric oxide (NO). Nitric oxide can diffuse through the plasma membrane into neighbouring cells, allowing cell signalling, so nitroindazole indirectly inhibits this signalling process. Other inhibitors exist such as 3-bromo-7-nitroindazole, which is more potent but less specific, or NPA (N-propyl-L-arginine), which acts on a different site.

Nitric oxide is a molecule and chemical compound with chemical formula of NO. In mammals including humans, nitric oxide is a signaling molecule involved in several physiological and pathological processes. It is a powerful vasodilator with a half-life of a few seconds in the blood. Standard pharmaceuticals such as nitroglycerine and amyl nitrite are precursors to nitric oxide. Low levels of nitric oxide production are typically due to ischemic damage in the liver.

<span class="mw-page-title-main">Nitroarginine</span> Chemical compound

Nitroarginine, or Nω-nitro-l-arginine, also known as L-NOARG, is a nitro derivative of the amino acid arginine. It is an inhibitor of nitric oxide synthase and hence a vasoconstrictor. As such, it finds widespread use as a biochemical tool in the study of nitric oxide and its biological effects.

<span class="mw-page-title-main">Methylarginine</span> Chemical compound

N-Methylarginine is an inhibitor of nitric oxide synthase. Chemically, it is a methyl derivative of the amino acid arginine. It is used as a biochemical tool in the study of physiological role of nitric oxide.

<span class="mw-page-title-main">Protein detoxification</span>

Protein detoxification is the process by which proteins containing methylated arginine are broken down and removed from the body.

<span class="mw-page-title-main">Homoarginine</span> Chemical compound

Homoarginine is an nonproteinogenic alpha-amino acid. It is structurally equivalent to a one-methylene group-higher homolog of arginine and to the guanidino derivative of lysine. L-Homoarginine is the naturally-occurring enantiomer. Physiologically, homoarginine increases nitric oxide (NO) supply and betters endothelial functions in the body, with a particular correlation and effect towards cardiovascular outcome and mortality. At physiological pH, homoarginine is cationic: the guanidino group is protonated.

Nitric-oxide synthase (NAD(P)H-dependent) (EC 1.14.14.47, nitric oxide synthetase, NO synthase) is an enzyme with systematic name L-arginine,NAD(P)H:oxygen oxidoreductase (nitric-oxide-forming). This enzyme catalyses the following chemical reaction

David S. Bredt is an American molecular neuroscientist.