NCBI Epigenomics

Last updated
NCBI Epigenomics
US-NLM-NCBI-Logo.svg
Content
Description epigenomic data sets.
Contact
Research center National Center for Biotechnology Information
AuthorsIan M Fingerman
Primary citationFingerman & al. (2011) [1]
Release date2010
Access
Website https://www.ncbi.nlm.nih.gov/epigenomics

The Epigenomics database at the National Center for Biotechnology Information was a database for whole-genome epigenetics data sets. [1] It was retired on 1 June 2016.

Contents

The Epigenomics database

The Epigenomics database of the National Center for Biotechnology Information (NCBI) at the National Institutes of Health (NIH) was launched in June 2010 as a means to collect maps of epigenetic modifications and their occurrence across the human genome. [2] This database provides a publicly available resource for maps in stem cells and primary ex vivo tissues that detail genome-wide landscapes of epigenetic factors that occur in human development and disease. [1]

Content of Epigenomics database

The primary resources for the content of the Epigenomics Database are derived from two archival databases at the NCBI: The Gene Expression Omnibus (GEO) and the Sequence Read Archive (SRA). [1] The Gene Expression Omnibus is a data system for high-throughput genomic data that is generated from microarray and next-generation sequencing technologies. [3] Data used in the Epigenomics database is a combination of GEO and SRA subsets that are specific to Epigenetic factors. This data is subjected to additional review and organized in a more easily attainable fashion before added to the Epigenomics database. [1]

Database use

All of the experiments and corresponding samples in the Epigenomics database are displayed in the default browser. As of October 2013, there are currently 4112 experiments and 1257 samples available in the database. [4] Five studied species are represented in the database, and many data tracks are available including expression of micro and small RNAs, histone modification and histone modifying enzymes, chromatin accessibility and chromatin associated factors, and transcription factors. [1] One such example from the database is a study of certain epigenetic factors in Drosophila melanogaster at the 20- to 24-hour embryonic stage of development. [5]

The Epigenomics database browser contain two fundamental search records, "Experiments" and "Samples".

The Experiment search record refers to one or more experiments with a set of scientific aims. [1] Here a user is able to retrieve full data source information. This information includes the institution of the submitter, links to the original data submissions in GEO and SRA, links to literature citations in PubMed and/or full text articles in Pubmed. [1] Experiment records contain a unique accession number that includes a prefix 'ESS'. [1]

The sample search record corresponds to the biological material examined in a given experiment in the database and provides details about source attributes with values from controlled vocabularies. [1] There are over 20 biological attribute fields available, and among these fields include strain, cultivar, ecotype, individual, gender, age, developmental stage, cell line, cell type, tissue type, and health status. [1]

Database navigation and usage help resources

There are many available resources online for help in navigating and using the Epigenomics database. The "Epigenetics Help" section of the NCBI help manual contains information on the searchable database and provides a user with tools to use, manage, download and upload, and navigate the database. [6] There are also guides to navigation of the database aimed at specific researchers and fields of study, such as stem cell research. [7]

Roadmap Epigenomics Project

In 2007 the National Institutes of Health (NIH) launched the Roadmap Epigenomics Project. The aim of the project is a development of publicly available reference epigenome maps from a variety of cell types. [1] These epigenetic maps are intended to provide resources for studies of epigenetic events that underline human development, diversity, and disease. [8] For similar efforts see the ENCODE (ENCyclopedia Of DNA Elements) Project, whose initiatives are complementary to the Roadmap Epigenomics Project. [9]

The epigenome

The epigenome consists of a record of the chemical changes to the DNA and Histone proteins of an organism. These chemical changes influence gene expression across many tissue types and developmental stages. [10] These epigenetic changes involve methods of altering gene expression that do not involve changes in the underlying primary DNA sequence; these include DNA methylation, Gene silencing, and chromatin structure, [11] as well as involvement of Non-coding RNA. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Epigenome</span> Biological term

An epigenome consists of a record of the chemical changes to the DNA and histone proteins of an organism; these changes can be passed down to an organism's offspring via transgenerational stranded epigenetic inheritance. Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome.

<span class="mw-page-title-main">Computational epigenetics</span>

Computational epigenetics uses statistical methods and mathematical modelling in epigenetic research. Due to the recent explosion of epigenome datasets, computational methods play an increasing role in all areas of epigenetic research.

H3K4me3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates tri-methylation at the 4th lysine residue of the histone H3 protein and is often involved in the regulation of gene expression. The name denotes the addition of three methyl groups (trimethylation) to the lysine 4 on the histone H3 protein.

H3K27me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation of lysine 27 on histone H3 protein.

H3K9me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation at the 9th lysine residue of the histone H3 protein and is often associated with heterochromatin.

H3K4me1 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the mono-methylation at the 4th lysine residue of the histone H3 protein and often associated with gene enhancers.

H3K36me3 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the tri-methylation at the 36th lysine residue of the histone H3 protein and often associated with gene bodies.

H3K79me2 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the di-methylation at the 79th lysine residue of the histone H3 protein. H3K79me2 is detected in the transcribed regions of active genes.

H2BK5ac is an epigenetic modification to the DNA packaging protein Histone H2B. It is a mark that indicates the acetylation at the 5th lysine residue of the histone H2B protein. H2BK5ac is involved in maintaining stem cells and colon cancer.

H4K20me is an epigenetic modification to the DNA packaging protein Histone H4. It is a mark that indicates the mono-methylation at the 20th lysine residue of the histone H4 protein. This mark can be di- and tri-methylated. It is critical for genome integrity including DNA damage repair, DNA replication and chromatin compaction.

H3K36me2 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the di-methylation at the 36th lysine residue of the histone H3 protein.

H3K36me is an epigenetic modification to the DNA packaging protein Histone H3, specifically, the mono-methylation at the 36th lysine residue of the histone H3 protein.

H3R17me2 is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the di-methylation at the 17th arginine residue of the histone H3 protein. In epigenetics, arginine methylation of histones H3 and H4 is associated with a more accessible chromatin structure and thus higher levels of transcription. The existence of arginine demethylases that could reverse arginine methylation is controversial.

H3R8me2 is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the di-methylation at the 8th arginine residue of the histone H3 protein. In epigenetics, arginine methylation of histones H3 and H4 is associated with a more accessible chromatin structure and thus higher levels of transcription. The existence of arginine demethylases that could reverse arginine methylation is controversial.

H3R2me2 is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the di-methylation at the 2nd arginine residue of the histone H3 protein. In epigenetics, arginine methylation of histones H3 and H4 is associated with a more accessible chromatin structure and thus higher levels of transcription. The existence of arginine demethylases that could reverse arginine methylation is controversial.

H4R3me2 is an epigenetic modification to the DNA packaging protein histone H4. It is a mark that indicates the di-methylation at the 3rd arginine residue of the histone H4 protein. In epigenetics, arginine methylation of histones H3 and H4 is associated with a more accessible chromatin structure and thus higher levels of transcription. The existence of arginine demethylases that could reverse arginine methylation is controversial.

H3S28P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 28th serine residue of the histone H3 protein.

H3T45P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 45th threonine residue of the histone H3 protein.

H3T3P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 3rd threonine residue of the histone H3 protein.

H3T6P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation of the 6th threonine residue of the histone H3 protein.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 Fingerman, Ian M; McDaniel Lee; Zhang Xuan; Ratzat Walter; Hassan Tarek; Jiang Zhifang; Cohen Robert F; Schuler Gregory D (Jan 2011). "NCBI Epigenomics: a new public resource for exploring epigenomic data sets". Nucleic Acids Res. 39 (Database issue): D908–12. doi:10.1093/nar/gkq1146. PMC   3013719 . PMID   21075792.
  2. "Overview". National Institutes of Health. Office of Strategic Coordination- The Common Fund. Retrieved 22 September 2013.
  3. Sayers, EW; et al. (January 2010). "Database resources of the National Center for Biotechnology Information". Nucleic Acids Research. 38 (Database issue): D5–16. doi:10.1093/nar/gkp967. PMC   2808881 . PMID   19910364.
  4. "Epigenomics database" . Retrieved 20 October 2013.
  5. Negre, N; Morrison CA; Shah PK; Bild NA; White KP (12 May 2009). "Genome-wide maps of chromatin state in staged Drosophila embryos, ChIP-seq". ModENCODE. GSE16013. Retrieved 17 November 2013.
  6. Bethesda (MD) (2010). Epigenomics Help. US National Library of Medicine: National Center for Biotechnology Information (US).
  7. Karnik, R; Meissner A. (3 July 2013). "Browsing (Epi)genomes: a guide to data resources and epigenome browsers for stem cell researchers". Cell Stem Cell. 13 (1): 14–21. doi:10.1016/j.stem.2013.06.006. PMC   3750740 . PMID   23827707.
  8. Bernstein, Bradley E; John A Stamatoyannopoulos; Joseph F Costello; Bing Ren; Aleksandar Milosavljevic; Alexander Meissner; Manolis Kellis; Marco A Marra; Arthur L Beaudet; Joseph R Ecker; Peggy J Farnham; Martin Hirst; Eric S Lander; Tarjei S Mikkelsen; James A Thomson (13 October 2010). "The NIH Roadmap Epigenomics Mapping Consortium". Nature Biotechnology. 28 (10): 1045–1048. doi:10.1038/nbt1010-1045. PMC   3607281 . PMID   20944595.
  9. Encode Project, Consortium (22 October 2004). "The ENCODE (ENCyclopedia Of DNA Elements) Project" (PDF). Science. 306 (5696): 636–40. Bibcode:2004Sci...306..636E. doi:10.1126/science.1105136. PMID   15499007. S2CID   22837649.
  10. Bernstein, Bradley E; Alexander Meissner; Eric S. Lander (19 December 2011). "The Mammalian Epigenome". Cell. 4. 128 (4): 669–681. doi: 10.1016/j.cell.2007.01.033 . PMID   17320505.
  11. Russo, Vincenzo EA; Robert A. Martienssen; Arthur D. Riggs (1996). Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor Laboratory Press. p. Abstract. ISBN   978-0-87969-490-6.
  12. Costa, Fabricio F. (29 February 2008). "Non-coding RNAs, epigenetics and complexity". Gene. 410 (1): 9–17. doi:10.1016/j.gene.2007.12.008. PMID   18226475.