NGSI-LD

Last updated
NGSI-LD - A graph-based context information model and API
AbbreviationNGSI-LD
StatusETSI Group Specification
Year started2017
Organization ETSI
AuthorsISG CIM (Industry Specification Group) of ETSI
Base standards RDF, RDFS, OWL, JSON, JSON-LD, HTTP, URI
Domain Information model, linked data, semantic web
Website CIM group page @ETSI

NGSI-LD is an information model and API for publishing, querying and subscribing to context information . It is meant to facilitate the open exchange and sharing of structured information between different stakeholders. It is used across application domains such as smart cities, [1] [2] [3] smart industry, smart agriculture, [4] [5] and more generally for the Internet of things, [6] cyber-physical systems, systems of systems [7] and digital twins. [8]

Contents

NGSI-LD has been standardized by ETSI (European Telecommunications Standardization Institute) through the Context Information Management Industry Specification Group, following a request [9] from the European Commission. Its takeup and further development are spelled out in the EU's "Rolling plan for ICT standardization". [10] NGSI-LD builds upon a decades-old corpus of research in context management frameworks and context modelling. [11] The acronym NGSI stands for "Next Generation Service Interfaces", a suite of specifications originally issued by the OMA which included Context Interfaces. [12] These were taken up and evolved as NGSIv2 [13] by the European Future Internet Public-Private-Partnership (PPP), which spawned the FIWARE open source community.

The NGSI-LD information model represents Context Information as entities that have properties and relationships to other entities. It is derived from property graphs, [14] with semantics formally defined on the basis of RDF and the semantic web framework. It can be serialized using JSON-LD. Every entity and relationship is given a unique IRI reference as identifier, making the corresponding data exportable as linked data datasets. The -LD suffix denotes this affiliation to the linked data universe.

Design

Information model

The NGSI-LD information model [15] can be considered as the first formal specification by a de jure standards organization of the property graph model, which has emerged since the early 2000s as an informal common denominator model for graph databases.

The core concepts are:

The NGSI-LD meta-model [15] formally defines these foundational concepts (Entities, Relationships, Properties) on the basis of RDF/RDFS/OWL, and partially on the basis of JSON-LD.

Complementing this metamodel, the NGSI-LD information model specification also provides a cross-domain ontology [15] that defines key constructs related to spatial, temporal or system-composition characteristics of entities.

The flexible information model allows the specification of any kind of entity. In order to allow interoperability between NGSI-LD users, standardized entities are collaboratively defined at Smart Data Models Program and made available at its repository with an open-source license.

Architecture

The NGSI-LD specification consists of an information model and an API. The API provides functionalities to support the architectural roles described in the following.

NGSI-LD-Architecture-Interactions.svg

The architectural roles allow the implementation of different deployment architectures. In a centralized architectures, there is a central Context Broker that stores the context information provided by Context Producers. In a distributed setting, all context information can be stored by Context Sources. In a federated architecture, Context Sources can again be Context Brokers that make aggregated information from a lower hierarchy level available. These architectures are not mutually exclusive, i.e. an actual deployment may combine them in different ways.

API

The NGSI-LD Context Information Management API [16] allows users to provide, consume and subscribe to context information in multiple scenarios and involving multiple stakeholders. It enables close to real-time access to information coming from many different sources (not only IoT data sources), named Context Sources, as well as publishing that information through interoperable data publication platforms.

It provides advanced geo-temporal queries, and it includes subscription mechanisms, in order for content consumers to be notified when content matching some constraints becomes available.

The API is designed to be agnostic to the architecture (central, distributed, federated or combinations thereof), so that applications which produce and consume information do not have to be tailored to the specifics of the system that distributes/brokers context information for them.

API operations comprise:

Uses

NGSI-LD was initiated by partners of the FIWARE programme, and is primarily used by the FIWARE open source community, [17] supported by the FIWARE Foundation [18] as well as a diverse range of other projects and users such as below:

History

NGSI-LD is the result of an evolution of Context Interfaces that started as part of the "Next Generation Service Interfaces" (NGSI) suite published by the Open Mobile Alliance (OMA) in 2012, which is also the source of the acronym NGSI. The NGSI suite included NGSI-9 as the Context Entity Discovery Interface and NGSI-10 as the Context Information Interface. [12] The NGSI standard from OMA and its intermediary evolutions relied on a classical Entity–attribute–value model and an XML-based representation. The NGSI Context Interfaces were adapted by the FI-WARE project, which developed the platform for the European Future Internet Public-Private-Partnership (PPP). The OMA NGSI Context Interfaces got an HTTP binding with a JSON representation, referred to as NGSIv1, which included both NGSI-9 and NGSI-10. In the course of FI-PPP the interfaces further evolved into NGSIv2, [13] which became the key interface of the FIWARE platform. After the end of the FI-PPP in 2016, the FIWARE platform became the core of the FIWARE Open Source Community managed by the FIWARE Foundation. In 2017, the ETSI Industry Specification Group on cross-cutting Context Information Management (ETSI ISG CIM) was created to evolve the Context Information Interface, which resulted in the creation of NGSI-LD. The limitations of the original information model led to the specification of a broader model which derives from property graphs, explicitly including relationships between entities, on a par with entities themselves. ETSI ISG CIM continues to evolve the NGSI-LD Information Model and API. It publishes new versions of the specification once or twice a year.

See also

Related Research Articles

<span class="mw-page-title-main">Jakarta EE</span> Set of specifications extending Java SE

Jakarta EE, formerly Java Platform, Enterprise Edition and Java 2 Platform, Enterprise Edition (J2EE), is a set of specifications, extending Java SE with specifications for enterprise features such as distributed computing and web services. Jakarta EE applications are run on reference runtimes, which can be microservices or application servers, which handle transactions, security, scalability, concurrency and management of the components they are deploying.

The Resource Description Framework (RDF) is a World Wide Web Consortium (W3C) standard originally designed as a data model for metadata. It has come to be used as a general method for description and exchange of graph data. RDF provides a variety of syntax notations and data serialization formats, with Turtle currently being the most widely used notation.

The Organization for the Advancement of Structured Information Standards is a nonprofit consortium that works on the development, convergence, and adoption of projects - both open standards and open source - for Computer security, blockchain, Internet of things (IoT), emergency management, cloud computing, legal data exchange, energy, content technologies, and other areas.

Health Level Seven, abbreviated to HL7, is a range of global standards for the transfer of clinical and administrative health data between applications with the aim to improve patient outcomes and health system performance. The HL7 standards focus on the application layer, which is "layer 7" in the Open Systems Interconnection model. The standards are produced by Health Level Seven International, an international standards organization, and are adopted by other standards issuing bodies such as American National Standards Institute and International Organization for Standardization. There are a range of primary standards that are commonly used across the industry, as well as secondary standards which are less frequently adopted.

A query language, also known as data query language or database query language (DQL), is a computer language used to make queries in databases and information systems. In database systems, query languages rely on strict theory to retrieve information. A well known example is the Structured Query Language (SQL).

OMA SpecWorks, previously the Open Mobile Alliance (OMA), is a standards organization which develops open, international technical standards for the mobile phone industry. It is a nonprofit Non-governmental organization (NGO), not a formal government-sponsored standards organization as is the International Telecommunication Union (ITU): a forum for industry stakeholders to agree on common specifications for products and services.

The Industry Foundation Classes (IFC) is a CAD data exchange data schema intended for description of architectural, building and construction industry data.

The Schools Interoperability Framework, Systems Interoperability Framework (UK), or SIF, is a data-sharing open specification for academic institutions from kindergarten through workforce. This specification is being used primarily in the United States, Canada, the UK, Australia, and New Zealand; however, it is increasingly being implemented in India, and elsewhere.

Semantic integration is the process of interrelating information from diverse sources, for example calendars and to do lists, email archives, presence information, documents of all sorts, contacts, search results, and advertising and marketing relevance derived from them. In this regard, semantics focuses on the organization of and action upon information by acting as an intermediary between heterogeneous data sources, which may conflict not only by structure but also context or value.

Jakarta Persistence, also known as JPA is a Jakarta EE application programming interface specification that describes the management of relational data in enterprise Java applications.

<span class="mw-page-title-main">Apache Jena</span> Open source semantic web framework for Java

Apache Jena is an open source Semantic Web framework for Java. It provides an API to extract data from and write to RDF graphs. The graphs are represented as an abstract "model". A model can be sourced with data from files, databases, URLs or a combination of these. A model can also be queried through SPARQL 1.1.

Freebase was a large collaborative knowledge base consisting of data composed mainly by its community members. It was an online collection of structured data harvested from many sources, including individual, user-submitted wiki contributions. Freebase aimed to create a global resource that allowed people to access common information more effectively. It was developed by the American software company Metaweb and run publicly beginning in March 2007. Metaweb was acquired by Google in a private sale announced on 16 July 2010. Google's Knowledge Graph is powered in part by Freebase.

JSON-LD is a method of encoding linked data using JSON. One goal for JSON-LD was to require as little effort as possible from developers to transform their existing JSON to JSON-LD. JSON-LD allows data to be serialized in a way that is similar to traditional JSON. It was initially developed by the JSON for Linking Data Community Group before being transferred to the RDF Working Group for review, improvement, and standardization, and is currently maintained by the JSON-LD Working Group. JSON-LD is a World Wide Web Consortium Recommendation.

The Open Smart Grid Protocol (OSGP) is a family of specifications published by the European Telecommunications Standards Institute (ETSI) used in conjunction with the ISO/IEC 14908 control networking standard for smart grid applications. OSGP is optimized to provide reliable and efficient delivery of command and control information for smart meters, direct load control modules, solar panels, gateways, and other smart grid devices. With over 5 million OSGP based smart meters and devices deployed worldwide it is one of the most widely used smart meter and smart grid device networking standards.

Cloud Infrastructure Management Interface (CIMI) is an open standard API specification for managing cloud infrastructure.

SensorThings API is an Open Geospatial Consortium (OGC) standard providing an open and unified framework to interconnect IoT sensing devices, data, and applications over the Web. It is an open standard addressing the syntactic interoperability and semantic interoperability of the Internet of Things. It complements the existing IoT networking protocols such CoAP, MQTT, HTTP, 6LowPAN. While the above-mentioned IoT networking protocols are addressing the ability for different IoT systems to exchange information, OGC SensorThings API is addressing the ability for different IoT systems to use and understand the exchanged information. As an OGC standard, SensorThings API also allows easy integration into existing Spatial Data Infrastructures or Geographic Information Systems.

oneM2M

oneM2M is a global partnership project founded in 2012 and constituted by 8 of the world's leading ICT standards development organizations, notably: ARIB (Japan), ATIS, CCSA (China), ETSI (Europe), TIA (USA), TSDSI (India), TTA (Korea) and TTC (Japan). The goal of the organization is to create a global technical standard for interoperability concerning the architecture, API specifications, security and enrolment solutions for Machine-to-Machine and IoT technologies based on requirements contributed by its members.

<span class="mw-page-title-main">Thing Description</span>

The Thing Description (TD) (or W3C WoT Thing Description (TD)) is a royalty-free, open information model with a JSON based representation format for the Internet of Things (IoT). A TD provides a unified way to describe the capabilities of an IoT device or service with its offered data model and functions, protocol usage, and further metadata. Using Thing Descriptions help reduce the complexity of integrating IoT devices and their capabilities into IoT applications.

References

  1. 1 2 Jeong, Seungmyeong; Kim, Seongyun; Kim, Jaeho (2020-12-07). "City Data Hub: Implementation of Standard-Based Smart City Data Platform for Interoperability". Sensors. 20 (23): 7000. Bibcode:2020Senso..20.7000J. doi: 10.3390/s20237000 . PMC   7731156 . PMID   33297506.
  2. Almeida, João; Silva, Jorge; Batista, Thais; Cavalcante, Everton (2020). "Proceedings of the 22nd International Conference on Enterprise Information Systems". Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS). Vol. 1. SciTePress. pp. 205–212. doi: 10.5220/0009422802050212 . ISBN   978-989-758-423-7.
  3. "NGSI-LD Resources". oascities.org. Open Agile Smart Cities. 2019-12-11. Retrieved 2021-03-24.
  4. López-Morales, Juan Antonio; Martinez, Juan Antonio; Skarmeta, Antonio F. (2020-01-24). "Digital Transformation of Agriculture through the Use of an Interoperable Platform". Sensors. 20 (4): 1153. Bibcode:2020Senso..20.1153L. doi: 10.3390/s20041153 . PMC   7070948 . PMID   32093147.
  5. Viola, Fabio; Antoniazzi, Francesco; Aguzzi, Cristiano; Kamienski, Carlos; Roffia, Luca (April 2019). "Mapping the NGSI-LD Context Model on Top of a SPARQL Event Processing Architecture: Implementation Guidelines". 2019 24th Conference of Open Innovations Association (FRUCT). 24th Conference of Open Innovations Association (FRUCT). Moscow, Russia: IEEE. pp. 493–501. doi:10.23919/FRUCT.2019.8711888. hdl: 11585/698548 . ISBN   978-952-68653-8-6.
  6. Cirillo, Flavio; Solmaz, Gürkan; Berz, Everton Luís; Bauer, Martin; Cheng, Bin; Kovacs, Ernö (September 2019). "A Standard-Based Open Source IoT Platform: FIWARE". IEEE Internet of Things Magazine. 2 (3): 12–18. arXiv: 2005.02788 . doi:10.1109/IOTM.0001.1800022. S2CID   210693632 . Retrieved 2021-03-24.
  7. Ulrich Ahle; Ernö Kovacs; Andreas Linneweber; Wolfgang Möller; Bernd Simon. (October 2020). "SMART CITY ECOSYSTEM: Laying the foundations - using decision-making sovereignty" (PDF). FIWARE and SAP. Retrieved 2021-03-24. p.6, In today's Smart Cities "System-of-Systems" architectures are created on the basis of the ETSI standard "Context Information Management (ETSI ISG CIM)" also known as NGSI-LD.
  8. Olivier Bloch, Miriam Berhane Russon, Gert de Tant (February 26, 2021). "Smart Cities Ontology for Digital Twins". Internet of Things Show. MSDN Channel 9. Retrieved 2021-03-24.
  9. "EU 2016 rolling plan for ICT standardisation"
  10. "EU 2021 rolling plan for ICT Standardisation"
  11. Bettini, Claudio; Brdiczka, Oliver; Henricksen, Karen; Indulska, Jadwiga; Nicklas, Daniela; Ranganathan, Anand; Riboni, Daniele (2010). "A survey of context modelling and reasoning techniques". Pervasive and Mobile Computing. 6 (2): 161–180. doi:10.1016/j.pmcj.2009.06.002.
  12. 1 2 Bauer, Martin; Kovacs, Ernö; Schülke, Anett; Ito, Naoko; Criminisi, Carmen; Goix, Laurent-Walter; Valla, Massimo (2010). "2010 14th International Conference on Intelligence in Next Generation Networks". Proceedings of the 14th International Conference on Intelligence in Next Generation Networks (ICIN). Berlin, Germany: IEEE. pp. 1–5. doi:10.1109/ICIN.2010.5640931. ISBN   978-1-4244-7443-1.
  13. 1 2 José Manuel Cantera Fonseca, Fermín Galán Márquez, Tobias Jacobs. "FIWARE-NGSI v2 Specification". FIWARE. Retrieved 2021-03-27.{{cite web}}: CS1 maint: multiple names: authors list (link)
  14. "The Property Graph Database Model"
  15. 1 2 3 NGSI-LD information model specification
  16. NGSI-LD API specification
  17. "FIWARE". GitHub .
  18. "Home". fiware.org.
  19. OASC Minimal Interoperability Mechanisms (MIM1)
  20. Living-eu technical commitments
  21. "We signed". 6 December 2019.
  22. "Supporting the declaration". June 2023.
  23. "IoT Big Data Framework Architecture"
  24. Detti, Andrea; Tropea, Giuseppe; Rossi, Giulio; Martinez, Juan A.; Skarmeta, Antonio F.; Nakazato, Hidenori (2019). "Virtual IoT Systems: Boosting IoT Innovation by Decoupling Things Providers and Applications Developers". 2019 Global IoT Summit (GIoTS). Aarhus, Denmark: IEEE. pp. 1–6. doi:10.1109/GIOTS.2019.8766422. ISBN   978-1-7281-2171-0. S2CID   198145674.
  25. "Information Model". 2019.
  26. Validation of NGSI-LD test Platform and Examples of uses
  27. "India Urban Data Exchange".
  28. "BIS Adopts IUDX Architecture and API Specifications as Standard for Data Exchange". 2022.
Implementations in open-source software projects