NAD(P) transhydrogenase, mitochondrial is an enzyme that in humans is encoded by the NNT gene on chromosome 5. [3] [4] [5]
The NNT gene contains 26 exons and encodes a transhydrogenase protein that is ~109 kDa in molecular weight and is involved in antioxidant defense in the mitochondria. Two alternatively spliced variants, encoding the same protein, have been found for this gene. [5]
Transhydrogenases including NNT can exist in an ‘open’ conformation, [6] where substrates can bind and products can dissociate, in which the dihydronicotinamide and nicotinamide rings are held apart to block hydride transfer. It can exist in an ‘occluded’ conformation, where the substrates are moved into apposition to permit redox chemistry. [6] The protein comprises three subunits (dI, dII and dIII), with the dII component spanning the inner mitochondrial membrane. [7] X-ray crystallography structure of the protein shows that proton pumping is probably coupled to changes in the binding affinities of dIII for NADP(+) and NADPH. The first betaalphabetaalphabeta motif of dIII contains a Gly-X-Gly-X-X-Ala/Val fingerprint, whereas the nicotinamide ring of NADP(+) is located on a ridge where it can interact with NADH on the dI subunit. [7]
NAD(P) transhydrogenase, mitochondrial is an integral protein of the inner mitochondrial membrane. The enzyme couples hydride transfer of reducing equivalent between NAD(H) and NADP(+) to proton translocation across the inner mitochondrial membrane. Under most physiological conditions, the enzyme uses energy from the mitochondrial proton gradient to produce high concentrations of NADPH. The resulting NADPH is used for biosynthesis as well as in reactions inside the mitochondria required to remove reactive oxygen species such as to retain a reduced glutathione pool (high GSH/GSSG ratio). The enzyme may be inactivated by oxidative modifications. [8]
Reaction catalyzed:
NAD(P) transhydrogenase, mitochondrial abundance may be associated with human heart failure. [9] In failing hearts, a partial loss of NAD(P) transhydrogenase's mitochondrial activity negatively impacts the NADPH-dependent enzyme activities in the mitochondria and the capacity of mitochondria to maintain proton gradients, which may adversely impact energy production and oxidative stress defense in heart failure and exacerbate oxidative damage to cellular proteins. [9]
Mutations in the NNT gene have been associated to familial glucocorticoid deficiency 1, a severe autosomal recessive disorder in human characterized by insensitivity to adrenocorticotropic hormone action on the adrenal cortex and an inability of the adrenal cortex to produce cortisol [10] Glucocorticoid deficiency 1 usually presents in neonatal to early childhood with episodes of hypoglycemia and other symptoms related to cortisol deficiency, including failure to thrive, recurrent illnesses or infections, convulsions, and shock. Diagnosis is confirmed with a low plasma cortisol measurement in the presence of an elevated adrenocorticotropic hormone level, and normal aldosterone and plasma renin measurements. [10]
A dehydrogenase is an enzyme belonging to the group of oxidoreductases that oxidizes a substrate by reducing an electron acceptor, usually NAD+/NADP+ or a flavin coenzyme such as FAD or FMN. Like all catalysts, they catalyze reverse as well as forward reactions, and in some cases this has physiological significance: for example, alcohol dehydrogenase catalyzes the oxidation of ethanol to acetaldehyde in animals, but in yeast it catalyzes the production of ethanol from acetaldehyde.
Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form, whereas NADP+ is the oxidized form. NADP+ is used by all forms of cellular life.
Isocitrate dehydrogenase (IDH) (EC 1.1.1.42) and (EC 1.1.1.41) is an enzyme that catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate (α-ketoglutarate) and CO2. This is a two-step process, which involves oxidation of isocitrate (a secondary alcohol) to oxalosuccinate (a ketone), followed by the decarboxylation of the carboxyl group beta to the ketone, forming alpha-ketoglutarate. In humans, IDH exists in three isoforms: IDH3 catalyzes the third step of the citric acid cycle while converting NAD+ to NADH in the mitochondria. The isoforms IDH1 and IDH2 catalyze the same reaction outside the context of the citric acid cycle and use NADP+ as a cofactor instead of NAD+. They localize to the cytosol as well as the mitochondrion and peroxisome.
In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.
2,4 Dienoyl-CoA reductase also known as DECR1 is an enzyme which in humans is encoded by the DECR1 gene which resides on chromosome 8. This enzyme catalyzes the following reactions
NAD+ kinase (EC 2.7.1.23, NADK) is an enzyme that converts nicotinamide adenine dinucleotide (NAD+) into NADP+ through phosphorylating the NAD+ coenzyme. NADP+ is an essential coenzyme that is reduced to NADPH primarily by the pentose phosphate pathway to provide reducing power in biosynthetic processes such as fatty acid biosynthesis and nucleotide synthesis. The structure of the NADK from the archaean Archaeoglobus fulgidus has been determined.
Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40) or NADP-malic enzyme (NADP-ME) is an enzyme that catalyzes the chemical reaction in the presence of a bivalent metal ion:
In enzymology, a ferredoxin-NADP+ reductase (EC 1.18.1.2) abbreviated FNR, is an enzyme that catalyzes the chemical reaction
In enzymology, a NAD(P)+ transhydrogenase (Re/Si-specific (EC 1.6.1.2) is an enzyme that catalyzes the chemical reaction
In biochemistry, NAD(P)+ transhydrogenase (Si-specific) (EC 1.6.1.1) is an enzyme that catalyzes the chemical reaction
MT-ATP6 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 6' that encodes the ATP synthase Fo subunit 6. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Mutations in the MT-ATP6 gene have been found in approximately 10 to 20 percent of people with Leigh syndrome.
Adrenodoxin reductase, was first isolated from bovine adrenal cortex where it functions as the first enzyme in the mitochondrial P450 systems that catalyze essential steps in steroid hormone biosynthesis. Examination of complete genome sequences revealed that adrenodoxin reductase gene is present in most metazoans and prokaryotes.
Isocitrate dehydrogenase [NADP], mitochondrial is an enzyme that in humans is encoded by the IDH2 gene.
NAD-dependent deacetylase sirtuin-3, mitochondrial also known as SIRT3 is a protein that in humans is encoded by the SIRT3 gene [sirtuin 3 ]. SIRT3 is member of the mammalian sirtuin family of proteins, which are homologs to the yeast Sir2 protein. SIRT3 exhibits NAD+-dependent deacetylase activity.
Pyocyanin (PCN−) is one of the many toxic compounds produced and secreted by the Gram negative bacterium Pseudomonas aeruginosa. Pyocyanin is a blue secondary metabolite, turning red below pH 4.9, with the ability to oxidise and reduce other molecules and therefore kill microbes competing against P. aeruginosa as well as mammalian cells of the lungs which P. aeruginosa has infected during cystic fibrosis. Since pyocyanin is a zwitterion at blood pH, it is easily able to cross the cell membrane. There are three different states in which pyocyanin can exist: oxidized (blue), monovalently reduced (colourless) or divalently reduced (red). Mitochondria play an important role in the cycling of pyocyanin between its redox states. Due to its redox-active properties, pyocyanin generates reactive oxygen species.
Reverse electron flow (also known as reverse electron transport) is a mechanism in microbial metabolism. Chemolithotrophs using an electron donor with a higher redox potential than NAD(P)+/NAD(P)H, such as nitrite or sulfur compounds, must use energy to reduce NAD(P)+. This energy is supplied by consuming proton motive force to drive electrons in a reverse direction through an electron transport chain and is thus the reverse process as forward electron transport. In some cases, the energy consumed in reverse electron transport is five times greater than energy gained from the forward process. Autotrophs can use this process to supply reducing power for inorganic carbon fixation.
Adrenodoxin-NADP+ reductase (EC 1.18.1.6, adrenodoxin reductase, nicotinamide adenine dinucleotide phosphate-adrenodoxin reductase, ADR, NADPH:adrenal ferredoxin oxidoreductase) is an enzyme with systematic name adrendoxin:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction
Pseudohypoxia refers to increased cytosolic ratio of free NADH/NAD+ ratio in cells, where NADH is overly increased and NAD+ is overly decreased. It can be caused by diabetic hyperglycemia and by excessive alcohol consumption. The insufficiency of available NAD+ produces symptoms similar to hypoxia (lack of oxygen), because NAD+ is primarily needed by the Krebs cycle for oxidative phosphorylation, and to a lesser extent is needed in anaerobic glycolysis. Oxidative phosphorylation and glyocolysis are vital as these metabolic pathways produce ATP, which is the molecule that releases energy necessary for cells to function.
Proton-Translocating NAD(P)+ Transhydrogenase (E.C. 7.1.1.1) is an enzyme in that catalyzes the translocation of hydrons that are connected to the redox reaction NADH + NADP+ + H+outside => NAD+ + NADPH + H+inside