Naive Set Theory (book)

Last updated
See also Naive set theory for the mathematical topic.
First edition NaiveSetTheory.jpg
First edition

Naive Set Theory is a mathematics textbook by Paul Halmos providing an undergraduate introduction to set theory. [1] Originally published by Van Nostrand in 1960, [2] it was reprinted in the Springer-Verlag Undergraduate Texts in Mathematics series in 1974. [3]

Contents

While the title states that it is naive, which is usually taken to mean without axioms, the book does introduce all the axioms of ZFC set theory (except the Axiom of Foundation), and gives correct and rigorous definitions for basic objects. [2] [4] Where it differs from a "true" axiomatic set theory book is its character: there are no discussions of axiomatic minutiae, and there is next to nothing about advanced topics like large cardinals. Instead, it tries to be intelligible to someone who has never thought about set theory before.

Halmos later stated that it was the fastest book he wrote, taking about six months, and that the book "wrote itself". [5]

Absence of the Axiom of Foundation

As noted above, the book omits the Axiom of Foundation (also known as the Axiom of Regularity). Halmos repeatedly dances around the issue of whether or not a set can contain itself.

But Halmos does let us prove that there are certain sets that cannot contain themselves.

Errata

See also

Bibliography

Related Research Articles

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

In set theory, a field of mathematics, the Burali-Forti paradox demonstrates that constructing "the set of all ordinal numbers" leads to a contradiction and therefore shows an antinomy in a system that allows its construction. It is named after Cesare Burali-Forti, who, in 1897, published a paper proving a theorem which, unknown to him, contradicted a previously proved result by Cantor. Bertrand Russell subsequently noticed the contradiction, and when he published it in his 1903 book Principles of Mathematics, he stated that it had been suggested to him by Burali-Forti's paper, with the result that it came to be known by Burali-Forti's name.

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.

In mathematics, in set theory, the constructible universe, denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.

Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities. Those Greek letters which have the same form as Latin letters are rarely used: capital A, B, E, Z, H, I, K, M, N, O, P, T, Y, X. Small ι, ο and υ are also rarely used, since they closely resemble the Latin letters i, o and u. Sometimes, font variants of Greek letters are used as distinct symbols in mathematics, in particular for ε/ϵ and π/ϖ. The archaic letter digamma (Ϝ/ϝ/ϛ) is sometimes used.

In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.

<span class="mw-page-title-main">Axiom of limitation of size</span>

In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In proof theory, ordinal analysis assigns ordinals to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory.

In mathematics, the Veblen functions are a hierarchy of normal functions, introduced by Oswald Veblen in Veblen (1908). If φ0 is any normal function, then for any non-zero ordinal α, φα is the function enumerating the common fixed points of φβ for β<α. These functions are all normal.

In mathematical logic and set theory, an ordinal collapsing function is a technique for defining certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even large cardinals, and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an impredicative manner of naming ordinals.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum of all countable ordinals. When considered as a set, the elements of are the countable ordinals, of which there are uncountably many.

In set theory, an extender is a system of ultrafilters which represents an elementary embedding witnessing large cardinal properties. A nonprincipal ultrafilter is the most basic case of an extender.

In mathematics, ψ0ω), widely known as Buchholz's ordinal, is a large countable ordinal that is used to measure the proof-theoretic strength of some mathematical systems. In particular, it is the proof theoretic ordinal of the subsystem -CA0 of second-order arithmetic; this is one of the "big five" subsystems studied in reverse mathematics (Simpson 1999). It is also the proof-theoretic ordinal of , the theory of finitely iterated inductive definitions, and of , a fragment of Kripke-Platek set theory extended by an axiom stating every set is contained in an admissible set. Buchholz's ordinal is also the order type of the segment bounded by in Buchholz's ordinal notation . Lastly, it can be expressed as the limit of the sequence: , , , ...

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.

<span class="mw-page-title-main">Ordinal number</span> Generalization of "n-th" to infinite cases

In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.

Buchholz's psi-functions are a hierarchy of single-argument ordinal functions introduced by German mathematician Wilfried Buchholz in 1986. These functions are a simplified version of the -functions, but nevertheless have the same strength as those. Later on this approach was extended by Jäger and Schütte.

In mathematics, Rathjen's  psi function is an ordinal collapsing function developed by Michael Rathjen. It collapses weakly Mahlo cardinals to generate large countable ordinals. A weakly Mahlo cardinal is a cardinal such that the set of regular cardinals below is closed under . Rathjen uses this to diagonalise over the weakly inaccessible hierarchy.

References

  1. Review of Naive Set Theory by H. Mirkil (April 1961), American Mathematical Monthly 68 (4): 392, doi : 10.2307/2311615.
  2. 1 2 Review of Naive Set Theory, L. Rieger, MR 0114756.
  3. MR 0453532
  4. Review of Naive Set Theory, Alfons Borgers (July 1969), Journal of Symbolic Logic 34 (2): 308, doi : 10.2307/2271138.
  5. Ewing, John H.; Gehring, Frederick W., eds. (1991), Paul Halmos: celebrating 50 years of mathematics, Springer-Verlag, Interview of Halmos with Donald J. Albers, p. 16, ISBN   0-387-97509-8 .