Nannizziopsis guarroi | |
---|---|
Scientific classification | |
Kingdom: | |
Division: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: | N. guarroi |
Binomial name | |
Nannizziopsis guarroi (J. Cabañes & Abarca) J. Cabañes, Abarca, Guarro, Stchigel, & Cano (2013) | |
Synonyms | |
|
Nannizziopsis guarroi was first documented in 2006 on a variety of lizards then described in Spain in 2010 and was classified as Chrysosporium guarroi, a member of the anamorphic genus Chrysosporium in the family Onygenaceae. Etymologically, the species epithet "guarroi" honours Professor Josep Guarro in recognition of his extensive mycological work including on the genus Chrysosporium. [1] Skin samples taken from pet green iguanas suffering from dermatomycosis were sent to a laboratory for analysis. Five species were isolated and morphologic studies identified the fungus causing the mycoses as a member of the anamorphic species of Chrysosporium. Further investigation of these species using a combination of morphological, cultural and molecular studies showed that they were not identical to any previously described species within the genus Chrysosporium so they were classified as a new species Chrysosporium guarroisp. nov. [1] The delineation of species in the genus Chrysosporium and their assignment to higher taxonomic levels can be challenging due to the marked morphological simplicity of these fungi. Increased scrutiny of strains of these fungi using molecular genetic tools has revealed numerous hidden species and unexpected relationships.
In 2013, Stchigel et al. conducted phenotypic and phylogenetic studies on a set of veterinary fungi identified in GenBank including the five strains which were previously isolated from iguanas (Spain) and described as Chrysosporium guarroi, one isolated from a snake (US), one from a lizard (US), two from bearded dragons (US) and one from a human (US). It was found that these species as well as others previously classified as members of the genus Chrysosporium in the family Onygenaceae formed a distinct lineage. This finding led to the proposal of a new family Nannizziopsiaceae in the order of Onygenales. Members of this family are known to cause skin mycoses in reptiles with isolated colonies that have pungent skunk-like odors. Other special features of the family Nannizziopsiaceae is their ability to grow at temperatures from 15–37 °C, [1] forming small, hyaline, conidia called arthroconidia and aleurioconidia. Their aleurioconidia and arthroconidia are usually 1-celled; however, rarely the latter might be 2- to 5-celled and are borne at the ends of smooth-walled long narrow stalked conidiophores. [2] Additionally, it was thought that each species of Nannizziopsis was associated with specific hosts but that was not proven to be true according to Stchigel since N. guarroi infected lizards, snakes and even immunocompromised humans. [2]
Early morphological studies of the fungi strains isolated from pet green iguanas from various geographical locations of Spain provided compelling evidence that they were members of the anamorphic genus Chrysosporium belonging to the family Onygenaceae. In fact, using the maximum-likelihood tree method, the Chrysosporium species to which the five isolates showed the greatest similarity was the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). [1] CANV was first described as Rollinda vriesii in 1970 [3] and later named "CANV" by Currah in 1985 [4] and has also been known historically to causes cutaneous mycosis and systematic infections in several species of reptiles such as lizards, chameleons, bearded dragons and snakes. [5] The five strains identified using the GenBank strains were:
Studies in 2010 of the molecular structure and phenotype of these strains showed that while they were morphologically very similar to the anamorphic genus Chrysosporium, they were actually very different. They were classified as a new species Chrysosporium guarroi sp.nov. in the family Onygenaceae and the order of Onygenales. [1] Further phylogenetic studies of the five isolates and strains of CANV by Stchigel and colleagues in 2010 using MEGA 5.05 with maximum likelihood algorithm and bootstrap analysis demonstrated that CANV and its relative species were within an order characterized by a unique lineage. This led to them being classified as a new family Nannizziopsiaceae in the order of Onygenales resulting in the previously described Chrysosporium guarroi being named Nannizziopsis guarroi. [2]
Nannizziopsis guarroi produces slow-growing white to yellowish powdery dense colonies of diameter 17–22 mm with raised centers and reverse side cream to yellow orange when grown in cultures for 14 days. [2] Its optimal growth temperature was observed to be 30–35 °C producing conidia which were indistinguishable under a microscope. These were mostly 1-celled condia borne at the ends of long narrow stalks which are thin- and smooth-walled. [1] [2] These conidia were classified into two distinct categories, namely the aleurioconidia which were not abundant and the arthroconidia which were formed from the fragmentation of hyphae and was the dominant strain produced under certain conditions. Teleomorphs of this species are not easily formed. [1]
Growth of N. guarroi was observed at temperatures ranging from 15–37 °C with optimal growth noted at 30–35 °C. On bromocresol purple-milk solids-glucose (BCP-MS-G) agar no hydrolysis was observed for all species with the exception of N. guarroi UTHSC R-4317 (the species affecting humans). On BCP-MS-G agar alkalisation was observed for all strains whereas acidification was not. All strains produced hemolysis on blood agar and showed lipolytic activity, the four strains associated with reptile dermatomycosis showed no growth on sabouraud dextrose agar (SDA) with 3% NaCl and on SDA with 5% NaCl growth was scarce. All strains showed good tolerance towards cycloheximide and growth at 15 °C but growth was scarce at 40 °C for four strains. [2]
Nannizziopsis guarroi has been found in various geographic locations in Spain and the US. These fungi have been found to be the etiologic agents in several cases of reported dermatomycosis in mostly reptiles and isolated cases of immunocompromised humans. [1] These fungi were first recognized as causative agents of reptile disease in the early 2000s. It is therefore unclear as to what could have caused their presumed recent growth and affinity for zoological and human hosts. Climate change has been suggested as one possible contributor to the emergence of disease; however, it is likely that historical infections existed but were ignored or misidentified. [2]
Nannizziopsis guarroi causes a skin infection mostly in reptiles which can progress to the subcutaneous layers and deeper tissues resulting in the death if not quickly identified and treated. Treatment options usually involves the application of topical agents such as ketoconazole, itraconazole or terbinafine combined with the removal of infected tissues or even amputation in severe cases. Another treatment that appears to show some efficacy in treating both reptile and human infections is voriconazole. [2] The factors that lead to the susceptibility of these animals to fungal skin infections are unknown but have been suggested to involve diet and living conditions or habitat. [1]
Chrysosporium is a genus of hyaline hyphomycetes fungi in the family Onygenaceae.
Microsporum gypseum is a soil-associated dermatophyte that occasionally is known to colonise and infect the upper dead layers of the skin of mammals. The name refers to an asexual "form-taxon" that has been associated with four related biological species of fungi: the pathogenic taxa Arthroderma incurvatum, A. gypsea, A. fulva and the non-pathogenic saprotroph A. corniculata. More recent studies have restricted M. gypseum to two teleomorphic species A. gypseum and A. incurvatum. The conidial states of A. fulva and A. corniculata have been assigned to M. fulvum and M. boullardii. Because the anamorphic states of these fungi are so similar, they can be identified reliably only by mating. Two mating strains have been discovered, "+" and "–". The classification of this species has been based on the characteristically rough-walled, blunt, club-shaped, multicelled macroconidia. Synonyms include Achorion gypseum, Microsporum flavescens, M. scorteum, and M. xanthodes. There has been past nomenclatural confusion in the usage of the generic names Microsporum and Microsporon.
Chlamydosauromyces punctatus is the sole species in the monotypic genus of fungi, Chlamydosauromyces in the family, Onygenaceae. It was found in the skin shed from frilled lizard. This fungus is mesophilic and digests hair. It reproduces both sexually and asexually. The fungus has so far not been reported to be pathogenic.
Polytolypa is a monotypic genus of fungus containing the single species Polytolypa hystricis. First classified in the Onygenaceae family, as of 2008 it is considered to be in the Ajellomycetaceae, although there is still uncertainty as to its phylogenetic relationships with other similar genera. This species is only known from a single specimen derived in the laboratory from a specimen of dung of the North American porcupine, Erethizon dorsatum, collected in Ontario, Canada. Polytolypa hystricis contains bioactive compounds that have antifungal activity.
Uncinocarpus is a genus of fungi within the Onygenaceae family. The name is derived from the Latin word uncinus, meaning "hook" and the Greek word karpos (καρπός), meaning "fruit". It was distinguished from the genus Gymnoascus based on keratinolytic capacity, ascospore morphology and the development of hooked, occasionally spiraling appendages. Alternatively, Uncinocarpus species may possess helically coiled or smooth, wavy appendages, or lack appendages altogether, an example of such species being U. orissi.
Aphanoascus fulvescens is a mould fungus that behaves as a keratinophilic saprotroph and belongs to the Ascomycota. It is readily isolated from soil and dung containing keratin-rich tissues that have been separated from their animal hosts. This organism, distributed worldwide, is most commonly found in areas of temperate climate, in keeping with its optimal growth temperature of 28 °C (82 °F). While A. fulvescens is recognized as a geophilic fungal species, it is also a facultative opportunistic pathogen. Although it is not a dermatophyte, A. fulvescens has occasionally been shown to cause onychomycosis infections in humans. Its recognition in the laboratory is clinically important for correct diagnosis and treatment of human dermal infections.
Nannizziopsis vreisii is a keratinophilic microfungus in the Family Onygenaceae of the order Onygenales. Also included in this family are dematophytes and saprophytic species. While the ecology of N. vriessi is not well known, there has been several studies which identifies the Chrysosporium anamorph of N. vriesii as a causal agent of skin lesions in reptiles across several regions. This species is usually identified under a microscope by its white ascomata, and hyaline and globose ascospores. Like many other fungi, N. vreisii has a sexual and asexual state, the asexual states are classified as the genus Chryososporium, Malbranchea or Sporendonema.
Chrysosporium keratinophilum is a mold that is closely related to the dermatophytic fungi and is mainly found in soil and the coats of wild animals to break down keratin. Chrysosporium keratinophilum is one of the more commonly occurring species of the genus Chrysosporium in nature. It is easily detected due to its characteristic "light-bulb" shape and flat base. Chrysosporium keratinophilum is most commonly found in keratin-rich, dead materials such as feathers, skin scales, hair, and hooves. Although not identified as pathogenic, it is a regular contaminant of cutaneous specimens which leads to the common misinterpretation that this fungus is pathogenic.
Chrysosporium longisporum is a keratinophilic microfungus in the family Onygenaceae that causes skin infections in reptiles, producing hyaline, thin-walled, small, sessile conidia and colonies with a strong skunk-like odour.
Nannizziopsis pluriseptata is a keratinophilic microfungus in the family Onygenaceae that causes skin infections in reptiles, producing hyaline, thin-walled, small, sessile conidia and colonies with a strong skunk-like odour. It is distinguished by its production of 1- to 5-celled sessile conidia.
Nannizziopsis arthrosporioides is a keratinophilic microfungus in the family Onygenaceae that causes skin infections in reptiles, producing hyaline, thin-walled, small, sessile conidia and colonies with a strong skunk-like odour. It is distinguished by the production of long arthroconidia.
Nannizziopsis draconii is a keratinophilic microfungus in the family Onygenaceae that causes skin infections in reptiles, producing hyaline, thin-walled, small, sessile conidia and colonies with a strong skunk-like odour.
Nannizziopsis chlamydospora is a keratinophilic microfungus in the family Onygenaceae that causes skin infections in reptiles, producing hyaline, thin-walled, small, sessile conidia and colonies with a strong skunk-like odour. This species is distinguished by producing chlamydospores and its ability to grow at 5 °C.
Ophidiomyces ophidiicola is the cause of ophidiomycosis also known as snake fungal disease or SFD in some species of snakes. It is a keratinophilic fungus from the family Onygenaceae of the order Onygenales. O. ophidiicola is an emerging pathogen of captive and wild snakes in North America and Europe. Clinical signs include skin swelling, crusts, and nodules of the skin. The mode of transmission is unknown, but is speculated to occur with direct contact between snakes or with the contaminated environment. Currently no treatment for O. ophidiicola is available. O. ophidiicola was identified by Sigler, Hambleton & Paré in 2013. O. ophidiicola is the only species in the genus Ophidiomyces. It was previously known as Chrysosporium ophiodiicola and is closely related to Chrysosporium anamorph Nannizziopsis vriesii (CANV).
Amauroascus kuehnii is a fungus in the phylum Ascomycota, class Eurotiomycetes. It is keratinophilic but not known to cause any human disease. It has been isolated from animal dungs, soil, and keratinous surfaces of live or deceased animals.
Keratinophyton durum is a keratinophilic fungus, that grows on keratin found in decomposing or shed animal hair and bird feathers. Various studies conducted in Canada, Japan, India, Spain, Poland, Ivory Coast and Iraq have isolated this fungus from decomposing animal hair and bird feathers using SDA and hair-bait technique. Presence of fungus in soil sediments and their ability to decompose hairs make them a potential human pathogen.
Penicillium spinulosum is a non-branched, fast-growing fungus with a swelling at the terminal of the stipe (vesiculate) in the genus Penicillium. P. spinulosum is able to grow and reproduce in environment with low temperature and low water availability, and is known to be acidotolerant. P. spinulosum is ubiquitously distributed, and can often be isolated from soil. Each individual strain of P. spinulosum differs from others in their colony morphology, including colony texture, amount of sporulation and roughness of conidia and conidiophores.
Ctenomyces serratus is a keratinophilic fungal soil saprotroph classified by the German mycologist, Michael Emil Eduard Eidam in 1880, who found it growing on an old decayed feather. Many accounts have shown that it has a global distribution, having been isolated in select soils as well as on feathers and other substrates with high keratin content. It has also been found in indoor dust of hospitals and houses in Kanpur, Northern India and as a common keratinophilic soil fungus in urban Berlin. This species has been associated with nail infections in humans as well as skin lesions and slower hair growth in guinea pigs.
Auxarthron californiense is a fungus within the family Onygenaceae family and one of the type species of the genus Auxarthron. A. californiense is generally distributed around the world and it is frequently found on dung and in soil near the entrances of animal burrows.
Oidiodendron cereale is a species of ascomycetes fungi in the order Helotiales. This fungus is found globally in temperate climates where average summer temperatures are below 25 °C, but there have been scattered reports from tropical and subtropical environments. It is predominantly found in soil, but little is known regarding their ecological roles in nature. However, an enzymatic study from Agriculture Canada showed that O. cereale can break down a variety of plant, fungal, and animal based substrates found in soil, which may have beneficial effects for plants. On rare occasions, this fungus is found on human skin and hair. There has been one reported case of O. cereale infection in 1969, causing Neurodermitis Nuchae.