Nautilia abyssi

Last updated

Nautilia abyssi
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
N. abyssi
Binomial name
Nautilia abyssi
Alain et al. 2009 [1]
Type strain
DSM 21157, JCM 15390, PH1209 [2]

Nautilia abyssi is a thermophilic, sulfur-reducing and strictly anaerobic bacterium from the genus of Nautilia which has been isolated from a hydrothermal chimney from the East Pacific Rise. [1] [3] [4] [5]

Related Research Articles

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product or these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H2 as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

Caldithrix is a genus of thermophilic and anaerobic bacteria, currently assigned to its own phylum.

Nautilia profundicola is a Gram-negative chemolithoautotrophic bacterium found around hydrothermal vents in the deep ocean. It was first discovered in 1999 on the East Pacific Rise at depth of 2,500 metres (8,200 ft), on the surface of the polychaete worm Alvinella pompejana. Nautilia profundicola lives symbiotically on the dorsal hairs of A. pompejana but they may also form biofilms and live independently on the walls of hydrothermal vents. The ability of N. profundicola to survive in an anaerobic environment rich in sulfur, H2 and CO2 of varying temperature makes it a useful organism to study, as these are the conditions that are theorized to have prevailed around the time of the earliest life on earth.

Pyrococcus abyssi is a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin at 2,000 metres (6,600 ft). It is anaerobic, sulfur-metabolizing, gram-negative, coccus-shaped and highly motile. Its optimum growth temperature is 96 °C (205 °F). Its type strain is GE5. Pyrococcus abyssi has been used as a model organism in studies of DNA polymerase. This species can also grow at high cell densities in bioreactors.

Sulfurovum lithotrophicum is a species of bacteria, the type species of its genus. It is a sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. It is mesophilic and also oxidises thiosulfate. It is a Gram-negative, non-motile and coccoid to oval-shaped bacterium. The type strain is 42BKTT.

The Nautiliaceae are a family of bacteria placed in an order to itself, Nautiliales, or in the order Campylobacterales. The members of the family are all thermophilic. They are:

Caminibacter hydrogeniphilus is a species of thermophilic, hydrogen-oxidizing bacterium. It is anaerobic, rod-shaped, motile and has polar flagella. The type strain is AM1116T.

Nautilia lithotrophica is a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. It is strictly anaerobic, with type strain 525T.

Desulfurobacterium thermolithotrophum is a species of autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. It is the type species of its genus, being thermophilic, anaerobic, Gram-negative, motile and rod-shaped, with type strain BSAT.

Deferribacter desulfuricans is a species of sulfur-, nitrate- and arsenate-reducing thermophile first isolated from a deep-sea hydrothermal vent. It is an anaerobic, heterotrophic thermophile with type strain SSM1T.

Marinitoga piezophila is a species of rod-shaped, thermo-piezophilic bacteria. It is, anaerobic, chemo-organotrophic, sulfur-reducing, motile, have a mean length of 1-1.5 micrometres and stains Gram-negative. The type strain is KA3T.

Caloranaerobacter is a Gram-negative, thermophilic, anaerobic and chemoorganotrophic bacterial genus from the family of Clostridiaceae.

Caloranaerobacter ferrireducens is a Gram-negative, thermophilic, anaerobic, iron-reducing and motile bacterium from the genus of Caloranaerobacter which has been isolated from hydrothermal sulfide deposits from the East Pacific Rise.

Hippea is an obligate anaerobic and moderately thermophilic bacteria genus from the family of Desulfobacteraceae. Hippea is named after the German microbiologist Hans Hippe.

Hippea maritima is a bacterium from the genus of Hippea which has been isolated from sediments from a hydrothermal vent from Matupi Harbour in Papua New Guinea.

Deferrisoma camini is a moderately thermophilic and anaerobic bacterium from the genus of Deferrisoma which has been isolated from a deep-sea hydrothermal vent from the Eastern Lau Spreading Centre in the Pacific Ocean.

Deferrisoma palaeochoriense is a thermophilic, anaerobic and mixotrophic bacterium from the genus of Deferrisoma which has been isolated from a hydrothermal vent from the Palaeochori Bay from Greece.

Nautilia nitratireducens is a Gram-negative thermophilic, chemosynthetic, anaerobic bacterium from the genus of Nautilia which has been isolated from a hydrothermal vent from the East Pacific Rise.

Nitratiruptor sp. is a genus of deep sea gram-negative Campylobacterota isolated from Iheya North Hydrothermal field in Okinawa Trough (Japan). This rod-shaped microorganism grows chemolithoautotrophically in a wide variety of electron donors and acceptors in absence of light and oxygen. It is also a thermophilic group capable of growing within the range of 37–65 °C with the optimal at 55 °C.

Exiguobacterium profundum is a Gram-positive, halotolerant, facultative anaerobic, moderately thermophilic and non-spore-forming bacterium from the genus of Exiguobacterium which has been isolade from a hydrothermal vent from the East Pacific Rise.

References

  1. 1 2 "Nautilia". LPSN .
  2. "Nautilia abyssi Taxon Passport - StrainInfo". www.straininfo.net.
  3. "Nautilia abyssi". www.uniprot.org.
  4. "Details: DSM-21157". www.dsmz.de.
  5. Alain, K; Callac, N; Guégan, M; Lesongeur, F; Crassous, P; Cambon-Bonavita, MA; Querellou, J; Prieur, D (June 2009). "Nautilia abyssi sp. nov., a thermophilic, chemolithoautotrophic, sulfur-reducing bacterium isolated from an East Pacific Rise hydrothermal vent". International Journal of Systematic and Evolutionary Microbiology. 59 (Pt 6): 1310–5. doi:10.1099/ijs.0.005454-0. PMID   19502307.