Near-field radiative heat transfer

Last updated
Prediction of radiative heat transfer between two spheres computed using near-field (NFRHT), classical (CRT), and discrete dipole (DDA) methods. Radiative heat transfer between two spheres.png
Prediction of radiative heat transfer between two spheres computed using near-field (NFRHT), classical (CRT), and discrete dipole (DDA) methods.

Near-field radiative heat transfer (NFRHT) is a branch of radiative heat transfer which deals with situations for which the objects and/or distances separating objects are comparable or smaller in scale or to the dominant wavelength of thermal radiation exchanging thermal energy. In this regime, the assumptions of geometrical optics inherent to classical radiative heat transfer are not valid and the effects of diffraction, interference, and tunneling of electromagentic waves can dominate the net heat transfer. These "near-field effects" can result in heat transfer rates exceeding the blackbody limit of classical radiative heat transfer.

Contents

History

The origin of the field of NFRHT is commonly traced to the work of Sergei M. Rytov in the Soviet Union. [1] Rytov examined the case of a semi-infinite absorbing body separated by a vacuum gap from a near-perfect mirror at zero temperature. He treated the source of thermal radiation as randomly fluctuating electromagnetic fields. Later in the United States, various groups theoretically examined the effects of wave interference and evanescent wave tunneling. [2] [3] [4] [5] In 1971, Dirk Polder and Michel Van Hove published the first fully correct formulation of NFRHT between arbitrary non-magnetic media. [6] They examined the case of two half-spaces separated by a small vacuum gap. Polder and Van Hove used the fluctuation-dissipation theorem to determine the statistical properties of the randomly fluctuating currents responsible for thermal emission and demonstrated definitively that evanescent waves were responsible for super-Planckian (exceeding the blackbody limit) heat transfer across small gaps.

Since the work of Polder and Van Hove, significant progress has been made in predicting NFRHT. Theoretical formalisms involving trace formulas, [7] fluctuating surface currents, [8] [9] and dyadic Green's functions, [10] [11] have all been developed. Though identical in result, each formalism can be more or less convenient when applied to different situations. Exact solutions for NFRHT between two spheres, [12] [13] [14] ensembles of spheres, [13] [15] a sphere and a half-space, [16] [9] and concentric cylinders [17] have all been determined using these various formalisms. NFRHT in other geometries has been addressed primarily through finite element methods. Meshed surface [8] and volume [18] [19] [20] methods have been developed which handle arbitrary geometries. Alternatively, curved surfaces can be discretized into pairs of flat surfaces and approximated to exchange energy like two semi-infinite half spaces using a thermal proximity approximation (sometimes referred to as the Derjaguin approximation). In systems of small particles, the discrete dipole approximation can be applied.

Theory

Fundamentals

Most modern works on NFRHT express results in the form of a Landauer formula. [21] Specifically, the net heat power transferred from body 1 to body 2 is given by

,

where is the reduced Planck constant, is the angular frequency, is the thermodynamic temperature, is the Bose function, is the Boltzmann constant, and

.

The Landauer approach writes the transmission of heat in terms discrete of thermal radiation channels, . The individual channel probabilities, , take values between 0 and 1.

NFRHT is sometimes alternatively reported as a linearized conductance, given by [11]

.

Two half-spaces

For two half-spaces, the radiation channels, , are the s- and p- linearly polarized waves. The transmission probabilities are given by [6] [11] [21]

where is the component of the wavevector parallel to the surface of the half-space. Further,

where:

Contributions to heat transfer for which arise from propagating waves whereas contributions from arise from evanescent waves.

Applications

Related Research Articles

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes. Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.

In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.

The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

<span class="mw-page-title-main">Squeezed coherent state</span> Type of quantum state

In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude and in the mode of a light wave. The product of the standard deviations of two such operators obeys the uncertainty principle:

<span class="mw-page-title-main">Lambda point</span>

The lambda point is the temperature at which normal fluid helium makes the transition to superfluid helium II. The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II triple point at 2.1768 K (−270.9732 °C) and 5.0418 kPa (0.049759 atm), which is the "saturated vapor pressure" at that temperature. The highest pressure at which He-I and He-II can coexist is the bcc−He-I−He-II triple point with a helium solid at 1.762 K (−271.388 °C), 29.725 atm (3,011.9 kPa).

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.

The transport of heat in solids involves both electrons and vibrations of the atoms (phonons). When the solid is perfectly ordered over hundreds of thousands of atoms, this transport obeys established physics. However, when the size of the ordered regions decreases new physics can arise, thermal transport in nanostructures. In some cases heat transport is more effective, in others it is not.

Microrheology is a technique used to measure the rheological properties of a medium, such as microviscosity, via the measurement of the trajectory of a flow tracer. It is a new way of doing rheology, traditionally done using a rheometer. There are two types of microrheology: passive microrheology and active microrheology. Passive microrheology uses inherent thermal energy to move the tracers, whereas active microrheology uses externally applied forces, such as from a magnetic field or an optical tweezer, to do so. Microrheology can be further differentiated into 1- and 2-particle methods.

Phonons can scatter through several mechanisms as they travel through the material. These scattering mechanisms are: Umklapp phonon-phonon scattering, phonon-impurity scattering, phonon-electron scattering, and phonon-boundary scattering. Each scattering mechanism can be characterised by a relaxation rate 1/ which is the inverse of the corresponding relaxation time.

<span class="mw-page-title-main">Dissipation model for extended environment</span> Mathematical model

A unified model for Diffusion Localization and Dissipation (DLD), optionally termed Diffusion with Local Dissipation, has been introduced for the study of Quantal Brownian Motion (QBM) in dynamical disorder. It can be regarded as a generalization of the familiar Caldeira-Leggett model.

The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations. The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution and operator multiplication is replaced by a star product.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

The pressuron is a hypothetical scalar particle which couples to both gravity and matter theorised in 2013. Although originally postulated without self-interaction potential, the pressuron is also a dark energy candidate when it has such a potential. The pressuron takes its name from the fact that it decouples from matter in pressure-less regimes, allowing the scalar–tensor theory of gravity involving it to pass solar system tests, as well as tests on the equivalence principle, even though it is fundamentally coupled to matter. Such a decoupling mechanism could explain why gravitation seems to be well described by general relativity at present epoch, while it could actually be more complex than that. Because of the way it couples to matter, the pressuron is a special case of the hypothetical string dilaton. Therefore, it is one of the possible solutions to the present non-observation of various signals coming from massless or light scalar fields that are generically predicted in string theory.

A quantum heat engine is a device that generates power from the heat flow between hot and cold reservoirs. The operation mechanism of the engine can be described by the laws of quantum mechanics. The first realization of a quantum heat engine was pointed out by Scovil and Schulz-DuBois in 1959, showing the connection of efficiency of the Carnot engine and the 3-level maser. Quantum refrigerators share the structure of quantum heat engines with the purpose of pumping heat from a cold to a hot bath consuming power first suggested by Geusic, Schulz-DuBois, De Grasse and Scovil. When the power is supplied by a laser the process is termed optical pumping or laser cooling, suggested by Wineland and Hänsch. Surprisingly heat engines and refrigerators can operate up to the scale of a single particle thus justifying the need for a quantum theory termed quantum thermodynamics.

<span class="mw-page-title-main">Cavity optomechanics</span>

Cavity optomechanics is a branch of physics which focuses on the interaction between light and mechanical objects on low-energy scales. It is a cross field of optics, quantum optics, solid-state physics and materials science. The motivation for research on cavity optomechanics comes from fundamental effects of quantum theory and gravity, as well as technological applications.

<span class="mw-page-title-main">Phonovoltaic</span>

A phonovoltaic (pV) cell converts vibrational (phonons) energy into a direct current much like the photovoltaic effect in a photovoltaic (PV) cell converts light (photon) into power. That is, it uses a p-n junction to separate the electrons and holes generated as valence electrons absorb optical phonons more energetic than the band gap, and then collects them in the metallic contacts for use in a circuit. The pV cell is an application of heat transfer physics and competes with other thermal energy harvesting devices like the thermoelectric generator.

Infinite derivative gravity is a theory of gravity which attempts to remove cosmological and black hole singularities by adding extra terms to the Einstein–Hilbert action, which weaken gravity at short distances.

References

  1. Rytov, Sergei Mikhailovich (1953). "[Theory of Electric Fluctuations and Thermal Radiation]". Academy of Sciences Press (in Russian).
  2. Emslie, A. G. (1961). "Radiation transfer by closely spaced shields". Archived from the original on August 2, 2021. Retrieved 2021-08-01.{{cite journal}}: Cite journal requires |journal= (help)
  3. Cravalho, E. G.; Tien, C. L.; Caren, R. P. (1967). "Effect of Small Spacings on Radiative Transfer Between Two Dielectrics". Journal of Heat Transfer. 89 (4): 351–358. doi:10.1115/1.3614396 . Retrieved 2021-08-01.
  4. Domoto, G. A.; Tien, C. L. (1970). "Thick Film Analysis of Radiative Transfer Between Parallel Metallic Surfaces" . Journal of Heat Transfer. 92 (3): 399–404. doi:10.1115/1.3449675 . Retrieved 2021-08-01.
  5. Boehm, R. F.; Tien, C. L. (1970). "Small Spacing Analysis of Radiative Transfer Between Parallel Metallic Surfaces" . Journal of Heat Transfer. 92 (3): 405–411. doi:10.1115/1.3449676 . Retrieved 2021-08-01.
  6. 1 2 Polder, Dirk; Van Hove, Michel A. (1971). "Theory of Radiative Heat Transfer between Closely Spaced Bodies". Physical Review B. 4 (10): 3303–3314. Bibcode:1971PhRvB...4.3303P. doi:10.1103/PhysRevB.4.3303 . Retrieved 2021-08-01.
  7. Krüger, Matthias; Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran (2012). "Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects". Physical Review B. 86 (11): 115423. arXiv: 1207.0374 . Bibcode:2012PhRvB..86k5423K. doi:10.1103/PhysRevB.86.115423. hdl: 1721.1/75443 . S2CID   15560455 . Retrieved 2021-08-01.
  8. 1 2 Rodriguez, Alejandro W.; Reid, M. T. H.; Johnson, Steven G. (2012). "Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries". Physical Review B. 86 (22): 220302. arXiv: 1206.1772 . Bibcode:2012PhRvB..86v0302R. doi:10.1103/PhysRevB.86.220302. hdl: 1721.1/80323 . S2CID   2089821 . Retrieved 2021-08-01.
  9. 1 2 Rodriguez, Alejandro W.; Reid, M. T. H.; Johnson, Steven G. (2013). "Fluctuating-surface-current formulation of radiative heat transfer: Theory and applications". Physical Review B. 88 (5): 054305. arXiv: 1304.1215 . Bibcode:2013PhRvB..88e4305R. doi:10.1103/PhysRevB.88.054305. hdl: 1721.1/88773 . S2CID   7331208 . Retrieved 2021-08-01.
  10. Volokitin, A. I.; Persson, B. N. J. (2001). "Radiative heat transfer between nanostructures". Physical Review B. 63 (20): 205404. arXiv: cond-mat/0605530 . Bibcode:2001PhRvB..63t5404V. doi:10.1103/PhysRevB.63.205404. S2CID   119363617 . Retrieved 2021-08-01.
  11. 1 2 3 Narayanaswamy, Arvind; Zheng, Yi (2014). "A Green's function formalism of energy and momentum transfer in fluctuational electrodynamics". Journal of Quantitative Spectroscopy and Radiative Transfer. 132: 12–21. arXiv: 1302.0545 . Bibcode:2014JQSRT.132...12N. doi:10.1016/j.jqsrt.2013.01.002. S2CID   54093246 . Retrieved 2021-08-01.
  12. Narayanaswamy, Arvind; Chen, Gang (2008). "Thermal near-field radiative transfer between two spheres". Physical Review B. 77 (7): 075125. arXiv: 0909.0765 . Bibcode:2008PhRvB..77g5125N. doi:10.1103/PhysRevB.77.075125. S2CID   56454063 . Retrieved 2021-08-01.
  13. 1 2 Mackowski, Daniel W.; Mishchenko, Michael I. (2008). "Prediction of Thermal Emission and Exchange Among Neighboring Wavelength-Sized Spheres". Journal of Heat Transfer. 130 (11). doi:10.1115/1.2957596 . Retrieved 2021-08-01.
  14. Czapla, Braden; Narayanaswamy, Arvind (2017). "Near-field thermal radiative transfer between two coated spheres". Physical Review B. 96 (12): 125404. arXiv: 1703.01320 . Bibcode:2017PhRvB..96l5404C. doi:10.1103/PhysRevB.96.125404. S2CID   119232589 . Retrieved 2021-08-01.
  15. Czapla, Braden; Narayanaswamy, Arvind (2019). "Thermal radiative energy exchange between a closely-spaced linear chain of spheres and its environment". Journal of Quantitative Spectroscopy and Radiative Transfer. 227: 4–11. arXiv: 1812.10769 . Bibcode:2019JQSRT.227....4C. doi:10.1016/j.jqsrt.2019.01.020. S2CID   119434620 . Retrieved 2021-08-01.
  16. Otey, Clayton; Fan, Shanhui (2011). "Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate". Physical Review B. 84 (24): 245431. arXiv: 1103.2668 . Bibcode:2011PhRvB..84x5431O. doi:10.1103/PhysRevB.84.245431. S2CID   53373575 . Retrieved 2021-08-01.
  17. Xiao, Binghe; Zheng, Zhiheng; Gu, Changqing; Yimin, Xuan (2023). "Near-field heat transfer between concentric cylinders" . Journal of Quantitative Spectroscopy and Radiative Transfer. doi:10.1016/j.jqsrt.2023.108588 . Retrieved 2023-03-27.
  18. Edalatpour, Sheila; Francoeur, Mathieu (2014). "The Thermal Discrete Dipole Approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries". Journal of Quantitative Spectroscopy and Radiative Transfer. 133: 364–373. arXiv: 1308.6262 . Bibcode:2014JQSRT.133..364E. doi:10.1016/j.jqsrt.2013.08.021. S2CID   118455427 . Retrieved 2021-08-01.
  19. Edalatpour, Sheila; Francoeur, Mathieu (2016). "Near-field radiative heat transfer between arbitrarily shaped objects and a surface". Physical Review B. 94 (4): 045406. arXiv: 1604.04924 . Bibcode:2016PhRvB..94d5406E. doi:10.1103/PhysRevB.94.045406. S2CID   119286674 . Retrieved 2021-08-01.
  20. Walter, Lindsay P.; Tervo, Eric J.; Francoeur, Mathieu (2022). "Near-field radiative heat transfer between irregularly shaped dielectric particles modeled with the discrete system Green's function method". Physical Review B. 106 (19): 195417. arXiv: 2204.05399 . doi:10.1103/PhysRevB.106.195417 . Retrieved 2023-02-28.
  21. 1 2 Biehs, S.-A.; Messina, R.; Venkataram, P. S.; Rodriguez, A. W.; Cuevas, J. C.; Ben-Abdallah, P. (2021). "Near-field radiative heat transfer in many-body systems". Reviews of Modern Physics. 93 (2): 025009. arXiv: 2007.05604 . Bibcode:2021RvMP...93b5009B. doi:10.1103/RevModPhys.93.025009. S2CID   220496584 . Retrieved 2021-08-01.
  22. Bhatt, Gaurang R.; Zhao, Bo; Roberts, Samantha; Datta, Ipshita; Mohanty, Aseema; Lin, Tong; Hartmann, Jean-Michel; St-Gelais, Raphael; Fan, Shanhui; Lipson, Michal (2020). "Integrated near-field thermo-photovoltaics for heat recycling". Nature Communications. 11 (1): 2545. arXiv: 1911.11137 . Bibcode:2020NatCo..11.2545B. doi:10.1038/s41467-020-16197-6. PMC   7242323 . PMID   32439917 . Retrieved 2021-08-01.
  23. Basu, Soumyadipta; Francoeur, Mathieu (2011). "Near-field radiative transfer based thermal rectification using doped silicon". Applied Physics Letters. 98 (11): 113106. Bibcode:2011ApPhL..98k3106B. doi:10.1063/1.3567026 . Retrieved 2021-08-01.
  24. Yang, Yue; Basu, Soumyadipta; Francoeur, Mathieu (2013). "Radiation-based near-field thermal rectification with phase transition materials" . Applied Physics Letters. 103 (16): 163101. Bibcode:2013ApPhL.103p3101Y. doi:10.1063/1.4825168 . Retrieved 2021-08-01.
  25. Guha, Biswajeet; Otey, Clayton; Poitras, Carl B.; Fan, Shanhui; Lipson, Michal (2012). "Near-Field Radiative Cooling of Nanostructures" . Nano Letters. 12 (9): 4546–4550. Bibcode:2012NanoL..12.4546G. doi:10.1021/nl301708e. PMID   22891815 . Retrieved 2021-08-01.
  26. Challener, W. A.; Peng, Chubing; Itagi, A. V.; Karns, D.; Peng, Wei; Peng, Yingguo; Yang, XiaoMin; Zhu, Xiaobin; Gokemeijer, N. J.; Hsia, Y.-T.; Ju, G.; Rottmayer, Robert E.; Seigler, Michael A.; Gage, E. C. (2009). "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer". Nature Photonics. 3 (4): 220–224. Bibcode:2009NaPho...3..220C. doi:10.1038/nphoton.2009.26 . Retrieved 2021-08-01.
  27. Stipe, Barry C.; Strand, Timothy C.; Poon, Chie C.; Balamane, Hamid; Boone, Thomas D.; Katine, Jordan A.; Li, Jui-Lung; Rawat, Vijay; Nemoto, Hiroaki; Hirotsune, Akemi; Hellwig, Olav; Ruiz, Ricardo; Dobisz, Elizabeth; Kercher, Dan S.; Robertson, Neil; Albrecht, Thomas R.; Terris, Bruce D. (2010). "Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna". Nature Photonics. 4 (7): 484–488. Bibcode:2010NaPho...4..484S. doi:10.1038/nphoton.2010.90 . Retrieved 2021-08-01.