In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, [1] nearest-neighbor distribution function [2] or nearest neighbor distribution [3] is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. [4] [5] More specifically, nearest neighbor functions are defined with respect to some point in the point process as being the probability distribution of the distance from this point to its nearest neighboring point in the same point process, hence they are used to describe the probability of another point existing within some distance of a point. A nearest neighbor function can be contrasted with a spherical contact distribution function, which is not defined in reference to some initial point but rather as the probability distribution of the radius of a sphere when it first encounters or makes contact with a point of a point process.
Nearest neighbor function are used in the study of point processes [1] [5] [6] as well as the related fields of stochastic geometry [4] and spatial statistics, [1] [7] which are applied in various scientific and engineering disciplines such as biology, geology, physics, and telecommunications. [4] [5] [8] [9]
Point processes are mathematical objects that are defined on some underlying mathematical space. Since these processes are often used to represent collections of points randomly scattered in space, time or both, the underlying space is usually d-dimensional Euclidean space denoted here by , but they can be defined on more abstract mathematical spaces. [6]
Point processes have a number of interpretations, which is reflected by the various types of point process notation. [4] [9] For example, if a point belongs to or is a member of a point process, denoted by , then this can be written as: [4]
and represents the point process being interpreted as a random set. Alternatively, the number of points of located in some Borel set is often written as: [8] [4] [7]
which reflects a random measure interpretation for point processes. These two notations are often used in parallel or interchangeably. [4] [7] [8]
The nearest neighbor function, as opposed to the spherical contact distribution function, is defined in relation to some point of a point process already existing in some region of space. More precisely, for some point in the point process , the nearest neighbor function is the probability distribution of the distance from that point to the nearest or closest neighboring point.
To define this function for a point located in at, for example, the origin , the -dimensional ball of radius centered at the origin o is considered. Given a point of existing at , then the nearest neighbor function is defined as: [4]
where denotes the conditional probability that there is one point of located in given there is a point of located at .
The reference point need not be at the origin, and can be located at an arbitrary point . Given a point of existing at , then the nearest neighbor function, is defined as:
Mathematical expressions of the nearest neighbor distribution only exist for a few point processes.
For a Poisson point process on with intensity measure the nearest neighbor function is:
which for the homogeneous case becomes
where denotes the volume (or more specifically, the Lebesgue measure) of the (hyper) ball of radius . In the plane with the reference point located at the origin, this becomes
In general, the spherical contact distribution function and the corresponding nearest neighbor function are not equal. However, these two functions are identical for Poisson point processes. [4] In fact, this characteristic is due to a unique property of Poisson processes and their Palm distributions, which forms part of the result known as the Slivnyak–Mecke [8] or Slivnyak's theorem. [1]
The fact that the spherical distribution function Hs(r) and nearest neighbor function Do(r) are identical for the Poisson point process can be used to statistically test if point process data appears to be that of a Poisson point process. For example, in spatial statistics the J-function is defined for all r ≥ 0 as: [4]
For a Poisson point process, the J function is simply J(r) = 1, hence why it is used as a non-parametric test for whether data behaves as though it were from a Poisson process. It is, however, thought possible to construct non-Poisson point processes for which J(r) = 1, [10] but such counterexamples are viewed as somewhat 'artificial' by some and exist for other statistical tests. [11]
More generally, J-function serves as one way (others include using factorial moment measures [1] ) to measure the interaction between points in a point process. [4]
In probability theory and related fields, a stochastic or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, cryptography and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance.
In probability theory and statistics, a Gaussian process is a stochastic process, such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those random variables, and as such, it is a distribution over functions with a continuous domain, e.g. time or space.
In physics and mathematics, a random field is a random function over an arbitrary domain. That is, it is a function that takes on a random value at each point (or some other domain). It is also sometimes thought of as a synonym for a stochastic process with some restriction on its index set. That is, by modern definitions, a random field is a generalization of a stochastic process where the underlying parameter need no longer be real or integer valued "time" but can instead take values that are multidimensional vectors or points on some manifold.
In statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on a mathematical space such as the real line or Euclidean space. Point processes can be used for spatial data analysis, which is of interest in such diverse disciplines as forestry, plant ecology, epidemiology, geography, seismology, materials science, astronomy, telecommunications, computational neuroscience, economics and others.
Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations.
An -superprocess, , within mathematics probability theory is a stochastic process on that is usually constructed as a special limit of near-critical branching diffusions.
In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.
Complete spatial randomness (CSR) describes a point process whereby point events occur within a given study area in a completely random fashion. It is synonymous with a homogeneous spatial Poisson process. Such a process is modeled using only one parameter , i.e. the density of points within the defined area. The term complete spatial randomness is commonly used in Applied Statistics in the context of examining certain point patterns, whereas in most other statistical contexts it is referred to the concept of a spatial Poisson process.
In mathematics, stochastic geometry is the study of random spatial patterns. At the heart of the subject lies the study of random point patterns. This leads to the theory of spatial point processes, hence notions of Palm conditioning, which extend to the more abstract setting of random measures.
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson. The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
In probability theory, a Laplace functional refers to one of two possible mathematical functions of functions or, more precisely, functionals that serve as mathematical tools for studying either point processes or concentration of measure properties of metric spaces. One type of Laplace functional, also known as a characteristic functional is defined in relation to a point process, which can be interpreted as random counting measures, and has applications in characterizing and deriving results on point processes. Its definition is analogous to a characteristic function for a random variable.
In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the expectation of a function summed over a point process to an integral involving the mean measure of the point process, which allows for the calculation of expected value and variance of the random sum. One version of the theorem, also known as Campbell's formula, entails an integral equation for the aforementioned sum over a general point process, and not necessarily a Poisson point process. There also exist equations involving moment measures and factorial moment measures that are considered versions of Campbell's formula. All these results are employed in probability and statistics with a particular importance in the theory of point processes and queueing theory as well as the related fields stochastic geometry, continuum percolation theory, and spatial statistics.
In mathematics and telecommunications, stochastic geometry models of wireless networks refer to mathematical models based on stochastic geometry that are designed to represent aspects of wireless networks. The related research consists of analyzing these models with the aim of better understanding wireless communication networks in order to predict and control various network performance metrics. The models require using techniques from stochastic geometry and related fields including point processes, spatial statistics, geometric probability, percolation theory, as well as methods from more general mathematical disciplines such as geometry, probability theory, stochastic processes, queueing theory, information theory, and Fourier analysis.
In information theory and telecommunication engineering, the signal-to-interference-plus-noise ratio (SINR) is a quantity used to give theoretical upper bounds on channel capacity in wireless communication systems such as networks. Analogous to the signal-to-noise ratio (SNR) used often in wired communications systems, the SINR is defined as the power of a certain signal of interest divided by the sum of the interference power and the power of some background noise. If the power of noise term is zero, then the SINR reduces to the signal-to-interference ratio (SIR). Conversely, zero interference reduces the SINR to the SNR, which is used less often when developing mathematical models of wireless networks such as cellular networks.
In probability and statistics, point process notation comprises the range of mathematical notation used to symbolically represent random objects known as point processes, which are used in related fields such as stochastic geometry, spatial statistics and continuum percolation theory and frequently serve as mathematical models of random phenomena, representable as points, in time, space or both.
In probability and statistics, a point process operation or point process transformation is a type of mathematical operation performed on a random object known as a point process, which are often used as mathematical models of phenomena that can be represented as points randomly located in space. These operations can be purely random, deterministic or both, and are used to construct new point processes, which can be then also used as mathematical models. The operations may include removing or thinning points from a point process, combining or superimposing multiple point processes into one point process or transforming the underlying space of the point process into another space. Point process operations and the resulting point processes are used in the theory of point processes and related fields such as stochastic geometry and spatial statistics.
In probability and statistics, a moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of (raw) moments of random variables, hence arise often in the study of point processes and related fields.
In probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of factorial moments, which are useful for studying non-negative integer-valued random variables.
In probability and statistics, a spherical contact distribution function, first contact distribution function, or empty space function is a mathematical function that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. More specifically, a spherical contact distribution function is defined as probability distribution of the radius of a sphere when it first encounters or makes contact with a point in a point process. This function can be contrasted with the nearest neighbour function, which is defined in relation to some point in the point process as being the probability distribution of the distance from that point to its nearest neighbouring point in the same point process.
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field. This point process has convenient mathematical properties, which has led to its being frequently defined in Euclidean space and used as a mathematical model for seemingly random processes in numerous disciplines such as astronomy, biology, ecology, geology, seismology, physics, economics, image processing, and telecommunications.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)