Neighborite

Last updated
Neighborite
General
Category Halide
Formula
(repeating unit)
Na Mg F 3
IMA symbol Nbo [1]
Strunz classification 3/C.03-70
Crystal system Orthorhombic
Crystal class mmm(2/m 2/m 2/m)
Space group Pcmn
Unit cell a = 5.363  Å, b = 7.676 Å
c = 5.503 Å; Z = 4
Identification
ColorColorless, mahogany, brown
Crystal habit Subangular rounds or octahedra
Twinning Interpenatration
Fracture Uneven
Mohs scale hardness4.5
Luster Vitreous
Diaphaneity Transparent to opaque
Specific gravity 3.03
Density 3.03 g/cm3 Measured; 3.06 g/cm3 Calculated
Optical propertiesAnisotropic
Refractive index 1.364±0.002
Birefringence δ=0.003
Dispersion r < v weak
References [2] [3] [4]

Neighborite is a mineral composed of a double fluoride salt of sodium and magnesium. It was initially recognized as pink and brown masses of round grains in the Green River Formation South of Ouray, Utah. Originally found in dark dolomitic oil shales, neighborite typically forms as subrounded or octahedral crystals. Neighborite received its name from Frank Neighbor, a geologist for the Sun Oil Co. based in Salt Lake City, Utah. Due to Mr. Neighbor's work in discovering neighborite, along with other newly discovered minerals to the Green River Formation, the mineral was named after him. Neighborite is in the family of perovskite crystal structure minerals, possessing a general formula of ABX3. [2]

Contents

Occurrence

Neighborite is found in association with minerals such as burbankite, nahcolite, wurtzite, barytocalcite, garrelsite, pyrite, calcite, and quartz. The mineral most commonly occurs on top of dark colored dolomitic oil shales. The resulting grains are subrounded in shape. Some neighborite crystals form as inclusions in barytocalcite. Octahedral crystals of neighborite exist in nature, but is generally uncommon relative to the subangular crystals. Neighborite is a rare mineral, only being found in select localities around the world. Regions where neighborite is currently found include select wells in or near Ouray, Utah; Montreal, Quebec; Oslo, Norway; Murmansk Oblast, Russia; Arusha, Tanzania. [3]

Physical properties

Neighborite is a colorless or pink to brown colored mineral exhibiting a vitreous luster. It exhibits a hardness of 4.5 on the Mohs hardness scale. It does not portray any specific cleavage planes, but instead exhibits an uneven fracture. Neighborite is insoluble in distilled water, but dissolves at a quicker rate with increased acidic conditions. [2]

Optical properties

Neighborite is an anisotropic mineral, meaning it has more than one refractive index. However, the birefringence of the mineral is rather low, at 0.003. The measured refractive indexes are 1.364±0.002. The octahedral {111} crystals of neighborite occasionally exhibit twinning. {100} cubic faces also exist as truncations. [2]

Chemical properties

Neighborite belongs to the perovskite family of minerals. These minerals have a general formula of ABX3. The structure consists of B atoms in an octahedron, with A and X atoms forming the cubic and octahedral cells of the structure, respectively. [2] Perovskites are most notably used as solar cells, achieving a general efficiency of around 25%. [4]

Chemical composition

Elementwt%
Na22.05
Mg23.31
F54.64
Total100.00

[2]

X-ray crystallography

Neighborite is an orthorhombic mineral, containing the space group Pcmn. The unit cell dimensions are a=5.363 Å, b=7.676 Å, c=5.503 Å, α=90.00°, β=90.00°, γ=90.00°. The dimensions of neighborite are extremely similar to those of a basic perovskite structure. It is therefore considered part of the perovskite supergroup of minerals. As higher temperatures are achieved, the three axes lengths of neighborite get closer together. At 900°C, the axes lengths are equal, giving neighborite a cubic cell. However, this cubic structure cannot be quenched, and can only exist at the high temperature range. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Brookite</span>

Brookite is the orthorhombic variant of titanium dioxide (TiO2), which occurs in four known natural polymorphic forms (minerals with the same composition but different structure). The other three of these forms are akaogiite (monoclinic), anatase (tetragonal) and rutile (tetragonal). Brookite is rare compared to anatase and rutile and, like these forms, it exhibits photocatalytic activity. Brookite also has a larger cell volume than either anatase or rutile, with 8 TiO2 groups per unit cell, compared with 4 for anatase and 2 for rutile. Iron (Fe), tantalum (Ta) and niobium (Nb) are common impurities in brookite.

<span class="mw-page-title-main">Perovskite (structure)</span> Type of crystal structure

A perovskite is any material with a crystal structure following the formula ABX3, which was first discovered as the mineral called perovskite, which consists of calcium titanium oxide (CaTiO3). The mineral was first discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named after Russian mineralogist L. A. Perovski (1792–1856). 'A' and 'B' are two positively charged ions (i.e. cations), often of very different sizes, and X is a negatively charged ion (an anion, frequently oxide) that bonds to both cations. The 'A' atoms are generally larger than the 'B' atoms. The ideal cubic structure has the B cation in 6-fold coordination, surrounded by an octahedron of anions, and the A cation in 12-fold cuboctahedral coordination. Additional perovskite forms may exist where either/both the A and B sites have a configuration of A1x-1A2x and/or B1y-1B2y and the X may deviate from the ideal coordination configuration as ions within the A and B sites undergo changes in their oxidation states.

<span class="mw-page-title-main">Bornite</span> Sulfide mineral

Bornite, also known as peacock ore, is a sulfide mineral with chemical composition Cu5FeS4 that crystallizes in the orthorhombic system (pseudo-cubic).

<span class="mw-page-title-main">Vivianite</span>

Vivianite (Fe2+
Fe2+
2
(PO
4
)
2
·8H
2
O
) is a hydrated iron phosphate mineral found in a number of geological environments. Small amounts of manganese Mn2+, magnesium Mg and calcium Ca may substitute for iron Fe2+ in the structure. Pure vivianite is colorless, but the mineral oxidizes very easily, changing the color, and it is usually found as deep blue to deep bluish green prismatic to flattened crystals.
Vivianite crystals are often found inside fossil shells, such as those of bivalves and gastropods, or attached to fossil bone.

<span class="mw-page-title-main">Skutterudite</span> Cobalt arsenide mineral

Named after Skuterudåsen, a hill in Modum, Norway, skutterudite is a cobalt arsenide mineral containing variable amounts of nickel and iron substituting for cobalt with the ideal formula CoAs3. Some references give the arsenic a variable formula subscript of 2–3. High nickel varieties are referred to as nickel-skutterudite, previously chloanthite. It is a hydrothermal ore mineral found in moderate to high temperature veins with other Ni-Co minerals. Associated minerals are arsenopyrite, native silver, erythrite, annabergite, nickeline, cobaltite, silver sulfosalts, native bismuth, calcite, siderite, barite and quartz. It is mined as an ore of cobalt and nickel with a by-product of arsenic.

<span class="mw-page-title-main">Barytocalcite</span>

Barytocalcite is an anhydrous barium calcium carbonate mineral with the chemical formula BaCa(CO3)2. It is trimorphous with alstonite and paralstonite, that is to say the three minerals have the same formula but different structures. Baryte and quartz pseudomorphs after barytocalcite have been observed.

<span class="mw-page-title-main">Leadhillite</span> Lead sulfate carbonate hydroxide mineral

Leadhillite is a lead sulfate carbonate hydroxide mineral, often associated with anglesite. It has the formula Pb4SO4(CO3)2(OH)2. Leadhillite crystallises in the monoclinic system, but develops pseudo-hexagonal forms due to crystal twinning. It forms transparent to translucent variably coloured crystals with an adamantine lustre. It is quite soft with a Mohs hardness of 2.5 and a relatively high specific gravity of 6.26 to 6.55.

<span class="mw-page-title-main">Vauxite</span>

Vauxite is a phosphate mineral with the chemical formula Fe2+Al2(PO4)2(OH)2·6(H2O). It belongs to the laueite – paravauxite group, paravauxite subgroup, although Mindat puts it as a member of the vantasselite Al4(PO4)3(OH)3·9H2O group. There is no similarity in structure between vauxite and paravauxite Fe2+Al2(PO4)2(OH)2·8H2O or metavauxite Fe3+Al2(PO4)2(OH)2·8H2O, even though they are closely similar chemically, and all minerals occur together as secondary minerals. Vauxite was named in 1922 for George Vaux Junior (1863–1927), an American attorney and mineral collector.

<span class="mw-page-title-main">Penroseite</span>

Penroseite is a rare selenide mineral with formula (Ni,Co,Cu)Se2. It has a gray-steel color and black streak with a hardness of 3. It is an isometric mineral, 2/m3. Penroseite was first discovered in 1925 in a Bolivian rhyolite. It was named for Richard Penrose (1863–1931), an economic geologist.

Mosesite is a very rare mineral found in few locations. It is a mercury mineral found as an accessory in deposits of mercury, often in conjunction with limestone. It is known to be found in the U.S. states of Texas and Nevada, and the Mexican states of Guerrero and Querétaro. It was named after Professor Alfred J. Moses (1859–1920) for his contributions to the field of mineralogy in discovering several minerals found alongside mosesite. The mineral itself is various shades of yellow and a high occurrence of spinel twinning. It becomes isotropic when heated to 186 °C (367 °F).

Bityite is considered a rare mineral, and it is an endmember to the margarite mica sub-group found within the phyllosilicate group. The mineral was first described by Antoine François Alfred Lacroix in 1908, and later its chemical composition was concluded by Professor Hugo Strunz. Bityite has a close association with beryl, and it generally crystallizes in pseudomorphs after it, or in cavities associated with reformed beryl crystals. The mineral is considered a late-stage constituent in lithium bearing pegmatites, and has only been encountered in a few localities throughout the world. The mineral was named by Lacroix after Mt. Bity, Madagascar from where it was first discovered.

<span class="mw-page-title-main">Cornubite</span>

Cornubite is a rare secondary copper arsenate mineral with formula: Cu5(AsO4)2(OH)4. It was first described for its discovery in 1958 in Wheal Carpenter, Gwinear, Cornwall, England, UK. The name is from Cornubia, the medieval Latin name for Cornwall. It is a dimorph of Cornwallite, and the arsenic analogue of pseudomalachite.

<span class="mw-page-title-main">Pearceite</span>

Pearceite is one of the four so-called "ruby silvers", pearceite Cu(Ag,Cu)6Ag9As2S11, pyrargyrite Ag3SbS3, proustite Ag3AsS3 and miargyrite AgSbS2. It was discovered in 1896 and named after Dr Richard Pearce (1837–1927), a Cornish–American chemist and metallurgist from Denver, Colorado.

<span class="mw-page-title-main">Brianyoungite</span>

Brianyoungite is a secondary zinc carbonate mineral. The Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA) classifies it as a carbonate with the formula Zn3(CO3)(OH)4, but sulfate groups SO4 also occupy the carbonate CO3 positions, in the ratio of about one sulfate to three carbonates, so other sources give the formula as Zn3(CO3,SO4)(OH)4, and Gaines et al. classify the mineral as a compound carbonate. It is similar in appearance to hydrozincite, another zinc carbonate. It was discovered in 1991 and designated IMA1991-053. In 1993 it was named "brianyoungite" after Brian Young (born 1947), a field geologist with the British Geological Survey, who provided the first specimens.

<span class="mw-page-title-main">Carminite</span> Anhydrous arsenate mineral containing hydroxyl

Carminite (PbFe3+2(AsO4)2(OH)2) is an anhydrous arsenate mineral containing hydroxyl. It is a rare secondary mineral that is structurally related to palermoite (Li2SrAl4(PO4)4(OH)4). Sewardite (CaFe3+2(AsO4)2(OH)2) is an analogue of carminite, with calcium in sewardite in place of the lead in carminite. Mawbyite is a dimorph (same formula, different structure) of carminite; mawbyite is monoclinic and carminite is orthorhombic. It has a molar mass of 639.87 g. It was discovered in 1850 and named for the characteristic carmine colour.

Antiperovskites is a type of crystal structure similar to the perovskite structure that is common in nature. The key difference is that the positions of the cation and anion constituents are reversed in the unit cell structure. In contrast to perovskite, antiperovskite compounds consist of two types of anions coordinated with one type of cation. Antiperovskite compounds are an important class of materials because they exhibit interesting and useful physical properties not found in perovskite materials, including as electrolytes in solid-state batteries.

<span class="mw-page-title-main">Reedmergnerite</span> Silicate mineral

Reedmergnerite is a borosilicate mineral named in honor of Frank S. Reed and John L. Mergner. It is approved by the International Mineralogical Association but was first described prior to the association's formation, first published in 1955. Although it is approved, it got grandfathered, meaning the name reedmergnerite is still believed to refer to a valid species. Reedmergnerite has a synthetic potassium analogue.

Falcondoite, a member of the sepiolite group, was first discovered in the Dominican Republic, near the town of Bonao. The mineral was found in a deposit mined by Falconbridge Dominica, and so was named "falcondoite" after the company. Falcondoite is frequently associated with sepiolite, garnierite, talc, and serpentine, and is commonly nickel-bearing. While the chemical formula for falcondoite can vary, the mineral must contain more nickel than magnesium to be considered its own species. The ideal chemical formula for falcondoite is (Ni,Mg)4Si6O15(OH)2·6H2O.

<span class="mw-page-title-main">Edoylerite</span>

Edoylerite is a rare mercury containing mineral. Edoylerite was first discovered in 1961 by Edward H. Oyler, whom the mineral is named after, in a meter-sized boulder at the Clear Creek claim in San Benito County, California. The Clear Creek claim is located near the abandoned Clear Creek mercury mine. The material from the boulder underwent several analyses including, X-ray powder diffraction (XRD), a single crystal study, and a preliminary electron microprobe analysis (EMA). Using these analyses it was determined that this was a new mineral but the nature of the material at the time prevented further investigation. It was not until 1986, with the discovery of crystals large enough for a crystal structure determination and a sufficient quantity for a full mineralogical characterization, that the study was renewed. The new edoylerite crystals were found in the same area at the Clear Creek claim but were situated in an outcrop of silica-carbonate rock. This silica-carbonate rock was mineralized by cinnabar following the hydrothermal alteration of the serpentinite in the rock. Edoylerite is a primary alteration product of cinnabar. Though found with cinnabar, the crystals of edoylerite do not typically exceed 0.5mm in length. The ideal chemical formula for edoylerite is Hg32+Cr6+O4S2

Vigezzite is a variant of the mineral aeschynite containing calcium, cerium, niobium, tantalum, and titanium. It was first discovered near Orcesco, Valle Vigezzo, Provo Novara, Northern Italy, in cavities of an albitic rock. The crystals of Vigezzite are flat prismatic crystals up to 2-3 mm length of an orange-yellow color.The name Vigezzite was chosen to draw attention to the locality that has produced the first occurrence of a Ca-Nb-Ta-mineral with Nb dominance over Ta, crystallizing with the aeschynite structure. The ideal chemical formula for vigezzite is (Ca,Ce),(Nb,Ta,Ti)2O6

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 5 6 7 Chao, E. C. T., et al. "Neighborite, NaMgF3, a new mineral from the green river formation, South Ouray, Utah." American Mineralogist: Journal of Earth and Planetary Materials 46.3-4_Part_1 (1961): 379-393.
  3. 1 2 Hudson Institute of Mineralogy, Neighborite. mindat.org. (n.d.). Retrieved December 7, 2021, from https://www.mindat.org/min-2871.html.
  4. 1 2 Perovskite Solar Cells. Energy.gov. (n.d.). Retrieved December 7, 2021, from https://www.energy.gov/eere/solar/perovskite-solar-cells.