Neurophysiological Biomarker Toolbox

Last updated
Neurophysiological Biomarker Toolbox
Initial release18 April 2012 (2012-04-18)
Written in Matlab
Operating system All OS supported by Matlab
Available inEnglish
Type Statistical software
License GPL v3.0
Website www.nbtwiki.net

The Neurophysiological Biomarker Toolbox (NBT) is an open source MATLAB toolbox for the computation and integration of neurophysiological biomarkers (e.g., biomarkers based on EEG or MEG recordings). [1] The NBT toolbox has so far been used in seven peer-reviewed research articles, and has a broad user base of more than 1000 users. [2] The NBT toolbox provides unique features for analysis of resting-state EEG or MEG recordings. NBT offers a pipeline from data storage to statistics including artifact rejection, signal visualization, biomarker computation, statistical testing, and biomarker databasing. NBT allows for easy implementation of new biomarkers, and incorporates an online wiki (the NBTwiki [3] ) that aims at facilitating collaboration among NBT users including extensive help and tutorials. The standardised way of data storage and analysis that NBT proposes allow different research projects to merge, compare, or share their data and biomarker algorithms. [4]

Contents

Features

Neuronal oscillations are generated at many spatial and temporal scales of neuronal organization, and thought to provide a network-level mechanism for the coordination of spatio-temporally distributed spiking activity. For an adequate understanding of quantitative changes in neurophysiological signals, such as electroencephalography (EEG) or magnetoencephalography (MEG), as a consequence of disease, experimental manipulations, or genetic variability there is a need to apply multiple biomarker algorithms.

The aim of the NBT toolbox is to make biomarker research easier at all levels. From having raw data, cleaning it, calculating biomarkers, to performing advanced statistics.

The NBT toolbox includes biomarkers, such as:

The toolbox has a standard template for how biomarkers should be implemented, which makes it relatively easy to implement new biomarkers. Originally the toolbox was aimed at biomarkers based on EEG or MEG signals, recently however the toolbox has moved towards supporting almost any type of biomarker data.

The biomarker data and associated meta information is stored in a Matlab-based database; the NBT elements database.

The NBT toolbox works as a plugin to the open-source Matlab toolbox EEGLAB.

Commercial EEG analysis mainly targeting large clinical research studies or clinical trials are provided as an service to NBT toolbox by NBT Analytics.

History

The development of the NBT toolbox was started in 2008 by Simon-Shlomo Poil and Klaus Linkenkaer-Hansen from the VU University Amsterdam, the Netherlands. Later the developer team was joined by Rick Jansen, Richard Hardstone, Sonja Simpraga, and Giuseppina Schiavone. The toolbox has also received contributions from many other people.[ citation needed ]

The toolbox and its associated tutorial website has served as a major part of courses at the VU University Amsterdam; such as, the Human Neurophysiology course (with on average 100 students each year), and the advanced human neurophysiology.

The first public release of the toolbox was made (release candidate R1) on the 18th April 2012. As of March 2014, the toolbox has been downloaded more than 1200 times. [5] The most recent public version of the NBT toolbox is 5.0.2-alpha (released 13 November 2014). [6]

Scientific publications using the NBT toolbox

See also

Other open-source toolboxes for analysis of M/EEG recordings:

Related Research Articles

<span class="mw-page-title-main">Magnetoencephalography</span> Mapping brain activity by recording magnetic fields produced by currents in the brain

Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using very sensitive magnetometers. Arrays of SQUIDs are currently the most common magnetometer, while the SERF magnetometer is being investigated for future machines. Applications of MEG include basic research into perceptual and cognitive brain processes, localizing regions affected by pathology before surgical removal, determining the function of various parts of the brain, and neurofeedback. This can be applied in a clinical setting to find locations of abnormalities as well as in an experimental setting to simply measure brain activity.

<span class="mw-page-title-main">Event-related potential</span> Brain response that is the direct result of a specific sensory, cognitive, or motor event

An event-related potential (ERP) is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped electrophysiological response to a stimulus. The study of the brain in this way provides a noninvasive means of evaluating brain functioning.

A gamma wave or gamma rhythm is a pattern of neural oscillation in humans with a frequency between 25 and 140 Hz, the 40 Hz point being of particular interest. Gamma rhythms are correlated with large scale brain network activity and cognitive phenomena such as working memory, attention, and perceptual grouping, and can be increased in amplitude via meditation or neurostimulation. Altered gamma activity has been observed in many mood and cognitive disorders such as Alzheimer's disease, epilepsy, and schizophrenia. Elevated gamma activity has also been observed in moments preceding death.

Alpha waves, or the alpha rhythm, are neural oscillations in the frequency range of 8–12 Hz likely originating from the synchronous and coherent electrical activity of thalamic pacemaker cells in humans. Historically, they are also called "Berger's waves" after Hans Berger, who first described them when he invented the EEG in 1924.

<span class="mw-page-title-main">Neural oscillation</span> Brainwaves, repetitive patterns of neural activity in the central nervous system

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

EEGLAB is a MATLAB toolbox distributed under the free BSD license for processing data from electroencephalography (EEG), magnetoencephalography (MEG), and other electrophysiological signals. Along with all the basic processing tools, EEGLAB implements independent component analysis (ICA), time/frequency analysis, artifact rejection, and several modes of data visualization. EEGLAB allows users to import their electrophysiological data in about 20 binary file formats, preprocess the data, visualize activity in single trials, and perform ICA. Artifactual ICA components may be subtracted from the data. Alternatively, ICA components representing brain activity may be further processed and analyzed. EEGLAB also allows users to group data from several subjects, and to cluster their independent components.

In stochastic processes, chaos theory and time series analysis, detrended fluctuation analysis (DFA) is a method for determining the statistical self-affinity of a signal. It is useful for analysing time series that appear to be long-memory processes or 1/f noise.

Chronux is an open-source software package developed for the loading, visualization and analysis of a variety of modalities / formats of neurobiological time series data. Usage of this tool enables neuroscientists to perform a variety of analysis on multichannel electrophysiological data such as LFP, EEG, MEG, Neuronal spike times and also on spatiotemporal data such as FMRI and dynamic optical imaging data. The software consists of a set of MATLAB routines interfaced with C libraries that can be used to perform the tasks that constitute a typical study of neurobiological data. These include local regression and smoothing, spike sorting and spectral analysis - including multitaper spectral analysis, a powerful nonparametric method to estimate power spectrum. The package also includes some GUIs for time series visualization and analysis. Chronux is GNU GPL v2 licensed.

<span class="mw-page-title-main">Electroencephalography</span> Electrophysiological monitoring method to record electrical activity of the brain

Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG". Clinical interpretation of EEG recordings is most often performed by visual inspection of the tracing or quantitative EEG analysis.

Quantitative electroencephalography is a field concerned with the numerical analysis of electroencephalography (EEG) data and associated behavioral correlates.

FieldTrip is a MATLAB software toolbox for magnetoencephalography (MEG) and electroencephalography (EEG) analysis. It is developed at the Donders Institute for Brain, Cognition and Behaviour at the Radboud University Nijmegen, together with collaborating institutes. The development of FieldTrip is supported by funding from the BrainGain, Human Connectome and ChildBrain projects. The FieldTrip software is released as open source under the GNU General Public License.

Andreas Karl Engel is a German neuroscientist. He is the director of the Department of Neurophysiology and Pathophysiology at the University Medical Center Hamburg-Eppendorf (UKE).

Corticomuscular Coherence relates to the synchrony in the neural activity of brain's cortical areas and muscle. The neural activities are picked up by electrophysiological recordings from the brain and muscle (EMG). It is a method to study the neural control of movement.

Intermuscular Coherence is a measure to quantify correlations between the activity of two muscles, which is often assessed using electromyography. The correlations in muscle activity are quantified in frequency domain, and therefore referred to as intermuscular coherence.

Corticocortical coherence is referred to the synchrony in the neural activity of different cortical brain areas. The neural activities are picked up by electrophysiological recordings from the brain. It is a method to study the brain's neural communication and function at rest or during functional tasks.

Guy Cheron is a professor of neurophysiology and movement biomechanics. He works at the Faculty of Motor Science in the Université Libre de Bruxelles and is a professor of neuropsychology at the Faculty of Psychology and Education Sciences in the University of Mons. He is the co-founder of the spinoff Human Waves.

<span class="mw-page-title-main">High-frequency oscillations</span> Brainwaves with frequencies larger than 80 Hz

High-frequency oscillations (HFO) are brain waves of the frequency faster than ~80 Hz, generated by neuronal cell population. High-frequency oscillations can be recorded during an electroencephalagram (EEG), local field potential (LFP) or electrocorticogram (ECoG) electrophysiology recordings. They are present in physiological state during sharp waves and ripples - oscillatory patterns involved in memory consolidation processes. HFOs are associated with pathophysiology of the brain like epileptic seizure and are often recorded during seizure onset. It makes a promising biomarker for the identification of the epileptogenic zone. Other studies points to the HFO role in psychiatric disorders and possible implications to psychotic episodes in schizophrenia.

Fractal physiology refers to the study of physiological systems using complexity science methods, such as chaos measure, entropy, and fractal dimensions. The underlying assumption is that biological systems are complex and exhibit non-linear patterns of activity, and that characterizing that complexity is useful to understand, and make inferences and predictions about the system.

MNE-Python ("MNE") is an open source toolbox for EEG and MEG signal processing. It is written in Python and is available from the PyPI package repository.

NeuroKit ("nk") is an open source toolbox for physiological signal processing. The most recent version, NeuroKit2, is written in Python and is available from the PyPI package repository. As of June 2022, the software was used in 94 scientific publications. NeuroKit2 is presented as one of the most popular and contributor-friendly open-source software for neurophysiology based on the number of downloads, the number of contributors, and other GitHub metrics.

References

  1. Poil, Simon-Shlomo (2013). Neurophysiological Biomarkers of cognitive decline: from criticality to toolbox. VU University Amsterdam. hdl:1871/39640. ISBN   978-90-5335-632-6.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Poil, Simon-Shlomo. "More than 1000 NBT users" . Retrieved 14 May 2015.
  3. "NBTwiki.net". NBTwiki.net. July 2012. Retrieved 2013-07-21.
  4. 1 2 3 Hardstone, Richard; Poil, Simon-Shlomo; Schiavone, Giuseppina; Jansen, Rick; Nikulin, Vadim V.; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus (1 January 2012). "Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations". Frontiers in Physiology. 3: 450. doi: 10.3389/fphys.2012.00450 . PMC   3510427 . PMID   23226132.
  5. Poil, Simon-Shlomo. "One year release birthday of NBT". poil.dk. Retrieved 22 July 2013.
  6. Poil, Simon-Shlomo (13 November 2014). "NBT release 5.0.2-alpha" . Retrieved 13 November 2014.
  7. Poil, S.-S.; Bollmann, S.; Ghisleni, C.; O’Gorman, R.L.; Klaver, P.; Ball, J.; Eich-Höchli, D.; Brandeis, D.; Michels, L. (February 2014). "Age dependent electroencephalographic changes in Attention Deficit/Hyperactivity Disorder (ADHD)". Clinical Neurophysiology. 125 (8): 1626–1638. doi:10.1016/j.clinph.2013.12.118. PMID   24582383. S2CID   2207752.
  8. Poil, Simon-Shlomo; de Haan, Willem; van der Flier, Wiesje M.; Mansvelder, Huibert D.; Scheltens, Philip; Linkenkaer-Hansen, Klaus (3 October 2013). "Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage". Frontiers in Aging Neuroscience. 5: 58. doi: 10.3389/fnagi.2013.00058 . PMC   3789214 . PMID   24106478.
  9. Diaz, B. Alexander; Van Der Sluis, Sophie; Moens, Sarah; Benjamins, Jeroen S.; Migliorati, Filippo; Stoffers, Diederick; Den Braber, Anouk; Poil, Simon-Shlomo; Hardstone, Richard; Van't Ent, Dennis; Boomsma, Dorret I.; De Geus, Eco; Mansvelder, Huibert D.; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus (1 January 2013). "The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition". Frontiers in Human Neuroscience. 7: 446. doi: 10.3389/fnhum.2013.00446 . PMC   3737475 . PMID   23964225.
  10. O'Gorman, RL; Poil, SS; Brandeis, D; Klaver, P; Bollmann, S; Ghisleni, C; Lüchinger, R; Martin, E; Shankaranarayanan, A; Alsop, DC; Michels, L (July 2013). "Coupling between resting cerebral perfusion and EEG" (PDF). Brain Topography. 26 (3): 442–57. doi:10.1007/s10548-012-0265-7. hdl: 20.500.11850/71767 . PMID   23160910. S2CID   9344965.