Early left anterior negativity

Last updated

The early left anterior negativity (commonly referred to as ELAN) is an event-related potential in electroencephalography (EEG), or component of brain activity that occurs in response to a certain kind of stimulus. It is characterized by a negative-going wave that peaks around 200 milliseconds or less after the onset of a stimulus, [1] [2] and most often occurs in response to linguistic stimuli that violate word-category or phrase structure rules (as in *the in room instead of in the room). [3] [4] [5] As such, it is frequently a topic of study in neurolinguistics experiments, specifically in areas such as sentence processing. While it is frequently used in language research, there is no evidence yet that it is necessarily a language-specific phenomenon.

Contents

More recent work has criticized the design of many of the foundational studies that characterized the ELAN, such that apparent ELAN effects might be the result of spillover from words prior to the onset of the critical word. This raises important questions about whether the ELAN is a true ERP component or an artifact of certain experimental designs. [6] [7]

Characteristics

The ELAN was first reported by Angela D. Friederici as a response to German sentences with phrase structure violations, [8] such as *the pizza was in the eaten (as opposed to the pizza was eaten); it can be elicited by English phrase structure violations such as *Max's of proof (as opposed to Max's proof) or *your write (as opposed to you write). [4] The ELAN is not elicited by sentences with other kinds of grammatical errors, such as subject-verb disagreement (*"he go to the store" rather than "he goes to the store") [9] or grammatically dispreferred and "awkward" sentences (such as "the doctor charged the patient was lying" rather than "the doctor charged that the patient was lying"); [10] it only appears when it is impossible to build local phrase structure.

It appears rapidly, peaking between 100 and 300 milliseconds after the onset of the grammatically incorrect stimulus [3] (other reports have placed its time course, or latency, between 100 and 200ms, [11] "under 200ms", [1] "around 125 ms", [8] or "about 160ms" [12] ). The speed of the ELAN may also be affected by characteristic of the violating stimuli; the ELAN appears later to visual stimuli that are fuzzy or difficult to see, and may occur earlier in morphologically complex spoken words where much information about the meaning of the word precedes the word's recognition point. [12]

Its name derives from the fact that it is picked up most robustly by EEG sensors on the left front regions of the scalp; [12] it may sometimes, however, have a bilateral (both sides of the scalp) distribution. [13]

Some authors consider the ELAN to be a separate response from the left anterior negativity (LAN), [1] [12] while others label it as just an early version of the LAN. [3] [14]

The ELAN has been reported in languages such as English, German, Dutch, Chinese, and Japanese. [4] It is possible, though, that it is not a response specific to language (in other words, that the ELAN might also occur in response to non-linguistic stimuli). [15]

Use in neurolinguistics

The ELAN response has played an important role in studies of sentence processing, particularly in the development of the so-called "serial model" or "syntax-first model" of sentence processing. According to this model, the brain's first step in processing sentences is to organize input and build local phrase structure (for example, to take the words the and pizza and organize them into a noun phrase the pizza), and it does not process semantic information or meaning until after this step has succeeded. [15] [16] [17] This model predicts that if the initial building of local phrase structure fails (as in the above examples *Max's of proof and *your write) then semantic processing (the brain's interpretation of the meaning of the sentence) does not go forward. [18] This has been tested by taking advantage of two brain responses: the ELAN, which reflects the phrase-structure-building, and the N400, which reflects semantic processing; the model predicts that sentences eliciting an ELAN (a violation of local phrase structure) will not elicit an N400, since the building of phrase structure is a prerequisite for semantic processing. [14] [18] These types of studies have had subjects read or listen to sentences that have both a syntactic and semantic violation in the same place. Some such studies have found such sentences to elicit an ELAN and no N400, thus supporting the claim of the "serial model", [19] while others have found both an ELAN and an N400, challenging the model. [14]

See also

Other ERP components

Related Research Articles

<span class="mw-page-title-main">Broca's area</span> Speech production region in the dominant hemisphere of the hominid brain

Broca's area, or the Broca area, is a region in the frontal lobe of the dominant hemisphere, usually the left, of the brain with functions linked to speech production.

<span class="mw-page-title-main">Neurolinguistics</span> Neuroscience and linguistics-related studies

Neurolinguistics is the study of neural mechanisms in the human brain that control the comprehension, production, and acquisition of language. As an interdisciplinary field, neurolinguistics draws methods and theories from fields such as neuroscience, linguistics, cognitive science, communication disorders and neuropsychology. Researchers are drawn to the field from a variety of backgrounds, bringing along a variety of experimental techniques as well as widely varying theoretical perspectives. Much work in neurolinguistics is informed by models in psycholinguistics and theoretical linguistics, and is focused on investigating how the brain can implement the processes that theoretical and psycholinguistics propose are necessary in producing and comprehending language. Neurolinguists study the physiological mechanisms by which the brain processes information related to language, and evaluate linguistic and psycholinguistic theories, using aphasiology, brain imaging, electrophysiology, and computer modeling.

Lexical semantics, as a subfield of linguistic semantics, is the study of word meanings. It includes the study of how words structure their meaning, how they act in grammar and compositionality, and the relationships between the distinct senses and uses of a word.

<span class="mw-page-title-main">Generative grammar</span> Theory in linguistics

Generative grammar, or generativism, is a linguistic theory that regards linguistics as the study of a hypothesised innate grammatical structure. It is a biological or biologistic modification of earlier structuralist theories of linguistics, deriving from logical syntax and glossematics. Generative grammar considers grammar as a system of rules that generates exactly those combinations of words that form grammatical sentences in a given language. It is a system of explicit rules that may apply repeatedly to generate an indefinite number of sentences which can be as long as one wants them to be. The difference from structural and functional models is that the object is base-generated within the verb phrase in generative grammar. This purportedly cognitive structure is thought of as being a part of a universal grammar, a syntactic structure which is caused by a genetic mutation in humans.

<span class="mw-page-title-main">Brodmann area 45</span> Brain area

Brodmann area 45 (BA45), is part of the frontal cortex in the human brain. It is situated on the lateral surface, inferior to BA9 and adjacent to BA46.

<span class="mw-page-title-main">Brodmann area 47</span> Brain area

Brodmann area 47, or BA47, is part of the frontal cortex in the human brain. It curves from the lateral surface of the frontal lobe into the ventral (orbital) frontal cortex. It is below areas BA10 and BA45, and beside BA11. This cytoarchitectonic region most closely corresponds to the gyral region the orbital part of inferior frontal gyrus, although these regions are not equivalent. Pars orbitalis is not based on cytoarchitectonic distinctions, and rather is defined according to gross anatomical landmarks. Despite a clear distinction, these two terms are often used liberally in peer-reviewed research journals.

<span class="mw-page-title-main">Language processing in the brain</span> How humans use words to communicate

In psycholinguistics, language processing refers to the way humans use words to communicate ideas and feelings, and how such communications are processed and understood. Language processing is considered to be a uniquely human ability that is not produced with the same grammatical understanding or systematicity in even human's closest primate relatives.

The N400 is a component of time-locked EEG signals known as event-related potentials (ERP). It is a negative-going deflection that peaks around 400 milliseconds post-stimulus onset, although it can extend from 250-500 ms, and is typically maximal over centro-parietal electrode sites. The N400 is part of the normal brain response to words and other meaningful stimuli, including visual and auditory words, sign language signs, pictures, faces, environmental sounds, and smells.

Language production is the production of spoken or written language. In psycholinguistics, it describes all of the stages between having a concept to express and translating that concept into linguistic forms. These stages have been described in two types of processing models: the lexical access models and the serial models. Through these models, psycholinguists can look into how speeches are produced in different ways, such as when the speaker is bilingual. Psycholinguists learn more about these models and different kinds of speech by using language production research methods that include collecting speech errors and elicited production tasks.

Sentence processing takes place whenever a reader or listener processes a language utterance, either in isolation or in the context of a conversation or a text. Many studies of the human language comprehension process have focused on reading of single utterances (sentences) without context. Extensive research has shown that language comprehension is affected by context preceding a given utterance as well as many other factors.

In certain theories of linguistics, thematic relations, also known as semantic roles, are the various roles that a noun phrase may play with respect to the action or state described by a governing verb, commonly the sentence's main verb. For example, in the sentence "Susan ate an apple", Susan is the doer of the eating, so she is an agent; an apple is the item that is eaten, so it is a patient.

<span class="mw-page-title-main">Andrea Moro</span> Italian linguist

Andrea Carlo Moro is an Italian linguist, neuroscientist and novelist.

Speech production is the process by which thoughts are translated into speech. This includes the selection of words, the organization of relevant grammatical forms, and then the articulation of the resulting sounds by the motor system using the vocal apparatus. Speech production can be spontaneous such as when a person creates the words of a conversation, reactive such as when they name a picture or read aloud a written word, or imitative, such as in speech repetition. Speech production is not the same as language production since language can also be produced manually by signs.

The P600 is an event-related potential (ERP) component, or peak in electrical brain activity measured by electroencephalography (EEG). It is a language-relevant ERP component and is thought to be elicited by hearing or reading grammatical errors and other syntactic anomalies. Therefore, it is a common topic of study in neurolinguistic experiments investigating sentence processing in the human brain.

Music semantics refers to the ability of music to convey semantic meaning. Semantics are a key feature of language, and whether music shares some of the same ability to prime and convey meaning has been the subject of recent study.

<span class="mw-page-title-main">Angela D. Friederici</span> German cognitive scientist (born 1952)

Angela Friederici is a director at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany, and is an internationally recognized expert in neuropsychology and linguistics. She is the author of over 400 academic articles and book chapters, and has edited 15 books on linguistics, neuroscience, language and psychology.

The mental lexicon is defined as a mental dictionary that contains information regarding the word store of a language user, such as their meanings, pronunciations, and syntactic characteristics. The mental lexicon is used in linguistics and psycholinguistics to refer to individual speakers' lexical, or word, representations. However, there is some disagreement as to the utility of the mental lexicon as a scientific construct.

Linguistic prediction is a phenomenon in psycholinguistics occurring whenever information about a word or other linguistic unit is activated before that unit is actually encountered. Evidence from eyetracking, event-related potentials, and other experimental methods indicates that in addition to integrating each subsequent word into the context formed by previously encountered words, language users may, under certain conditions, try to predict upcoming words. In particular, prediction seems to occur regularly when the context of a sentence greatly limits the possible words that have not yet been revealed. For instance, a person listening to a sentence like, "In the summer it is hot, and in the winter it is..." would be highly likely to predict the sentence completion "cold" in advance of actually hearing it. A form of prediction is also thought to occur in some types of lexical priming, a phenomenon whereby a word becomes easier to process if it is preceded by a related word. Linguistic prediction is an active area of research in psycholinguistics and cognitive neuroscience.

<span class="mw-page-title-main">Jabberwocky sentence</span>

A Jabberwocky sentence is a type of sentence of interest in neurolinguistics. Jabberwocky sentences take their name from the language of Lewis Carroll's well-known poem "Jabberwocky". In the poem, Carroll uses correct English grammar and syntax, but many of the words are made up and merely suggest meaning. A Jabberwocky sentence is therefore a sentence which uses correct grammar and syntax but contains nonsense words, rendering it semantically meaningless.

Syntactic bootstrapping is a theory in developmental psycholinguistics and language acquisition which proposes that children learn word meanings by recognizing syntactic categories and the structure of their language. It is proposed that children have innate knowledge of the links between syntactic and semantic categories and can use these observations to make inferences about word meaning. Learning words in one's native language can be challenging because the extralinguistic context of use does not give specific enough information about word meanings. Therefore, in addition to extralinguistic cues, conclusions about syntactic categories are made which then lead to inferences about a word's meaning. This theory aims to explain the acquisition of lexical categories such as verbs, nouns, etc. and functional categories such as case markers, determiners, etc.

References

  1. 1 2 3 Frisch, Stefan; Anja Hahne; Angela D. Friederici (2004). "Word category and verbargument structure information in the dynamics of parsing". Cognition. 91 (3): 191–219. doi:10.1016/j.cognition.2003.09.009. PMID   15168895. S2CID   44889189.
  2. Pulvermüller, Friedemann; Yury Shtyrov; Anna S. Hasting; Robert P. Carlyton (2008). "Syntax as a reflex: Neurophysiological evidence for the early automaticity of syntactic processing". Brain and Language. 104 (3): 244–53. doi:10.1016/j.bandl.2007.05.002. PMID   17624417. S2CID   13870754.
  3. 1 2 3 Hagoort, Peter (2003). "How the brain solves the binding problem for language: a neurocomputational model of syntactic processing". NeuroImage. 20: S18–29. doi:10.1016/j.neuroimage.2003.09.013. hdl: 11858/00-001M-0000-0013-1E0C-2 . PMID   14597293. S2CID   18845725.
  4. 1 2 3 Friederici, Angela D.; Jürgen Weissenborn (2007). "Mapping sentence form onto meaning: The syntax-semantic interface". Brain Research. 1146: 50–8. doi:10.1016/j.brainres.2006.08.038. PMID   16956590. S2CID   14664214.
  5. Friederici, Angela D. (2002). "Towards a neural basis of auditory sentence processing". Trends in Cognitive Sciences. 6 (2): 81. doi: 10.1016/S1364-6613(00)01839-8 . hdl: 11858/00-001M-0000-0010-E573-8 . PMID   15866191.
  6. Steinhauer, Karsten; Drury, John E. (February 2012). "On the early left-anterior negativity (ELAN) in syntax studies". Brain and Language. 120 (2): 135–162. doi:10.1016/j.bandl.2011.07.001. ISSN   1090-2155. PMID   21924483. S2CID   10762789.
  7. Osterhout, L., McLaughlin, J., Kim, A., Greewald, R., & Inoue, K. (2004). Sentences in the brain: Event-related potentials as real-time reflections of sentence comprehension and language learning. In M. Carreiras & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking-ERPs, and beyond (pp. 271–308). New York: Psychology Press.
  8. 1 2 Townsend, David J; Thomas G. Bever (2001). Sentence Comprehension: The Integration of Habits and Rules . MIT Press. p.  382. ISBN   978-0-262-70080-1. early left anterior negativity.
  9. Hagoort, Peter; C.M. Brown; J. Groothusen (1993). "The syntactic positive shift (SPS) as an ERP measure of syntactic processing". Language and Cognitive Processes. 8 (4): 439–483. doi:10.1080/01690969308407585. hdl: 2066/15987 .
  10. Friederici, Angela; Stefan Frisch (2000). "Verb Argument Structure Processing: The Role of Verb-Specific and Argument-Specific Information". Journal of Memory and Language. 43 (3): 476–507. doi:10.1006/jmla.2000.2709.
  11. Friederici, Angela D.; Karsten Steinhauer; Stefan Frisch (1999). "Lexical integration: Sequential effects of syntactic and semantic information". Memory & Cognition. 27 (3): 439. doi: 10.3758/bf03211539 . PMID   10355234.
  12. 1 2 3 4 Hahne, Anja; Angela D. Friederici (2002). "Differential task effects on semantic and syntactic processes as revealed by ERPs". Cognitive Brain Research. 13 (3): 340. doi:10.1016/S0926-6410(01)00127-6. hdl: 11858/00-001M-0000-0010-ABA4-1 . PMID   11918999.
  13. Hagoort, Peter (2003). "Interplay between Syntax and Semantics during Sentence Comprehension: ErP Effects of Combining Syntactic and Semantic Violations". Journal of Cognitive Neuroscience. 15 (6): 883–99. doi:10.1162/089892903322370807. hdl: 11858/00-001M-0000-0013-18B4-B . PMID   14511541. S2CID   15814199.
  14. 1 2 3 Ye, Zheng; Yue-jia, Luo; Friederici, Angela D.; Zhou, Xiaolin (2006). "Semantic and syntactic processing in Chinese sentence comprehension: Evidence from event-related potentials". Brain Research. 1071 (1): 186–96. doi:10.1016/j.brainres.2005.11.085. PMID   16412999. S2CID   18324338.
  15. 1 2 Hagoort, Peter (2003). "How the brain solves the binding problem for language: a neurocomputational model of syntactic processing". NeuroImage. 20: S18–S29. doi:10.1016/j.neuroimage.2003.09.013. hdl: 11858/00-001M-0000-0013-1E0C-2 . PMID   14597293. S2CID   18845725.
  16. Friederici, Angela D.; Jürgen Weissenborn (2007). "Mapping sentence form onto meaning: The syntax-semantic interface". Brain Research. 1146: 50–8. doi:10.1016/j.brainres.2006.08.038. PMID   16956590. S2CID   14664214.
  17. Kim, Albert; Lee Osterhout (2005). "The independence of combinatory semantic processing: Evidence from event-related potentials". Journal of Memory and Language. 52 (2): 206. CiteSeerX   10.1.1.115.4927 . doi:10.1016/j.jml.2004.10.002.
  18. 1 2 Frisch, Stefan; Anja Hahne; Angela D. Friederici (2004). "Word category and verbargument structure information in the dynamics of parsing". Cognition. 91 (3): 196. doi:10.1016/j.cognition.2003.09.009. PMID   15168895. S2CID   44889189.
  19. Frisch, Stefan; Anja Hahne; Angela D. Friederici (2004). "Word category and verbargument structure information in the dynamics of parsing". Cognition. 91 (3): 191–219. doi:10.1016/j.cognition.2003.09.009. PMID   15168895. S2CID   44889189.