P3b

Last updated
The P300 response of different healthy subjects in a two-tone auditory oddball paradigm. The plots show the average response to oddball (red) and standard (blue) trials and their difference (black). From Surprise response as a probe for compressed memory states. These examples show the significant individual variability in amplitude, latency and waveform shape across different subjects. P300 response of different subjects.png
The P300 response of different healthy subjects in a two-tone auditory oddball paradigm. The plots show the average response to oddball (red) and standard (blue) trials and their difference (black). From Surprise response as a probe for compressed memory states. These examples show the significant individual variability in amplitude, latency and waveform shape across different subjects.

The P3b is a subcomponent of the P300, an event-related potential (ERP) component that can be observed in human scalp recordings of brain electrical activity. The P3b is a positive-going amplitude (usually relative to a reference behind the ear or the average of two such references) peaking at around 300 ms, though the peak will vary in latency (delay between stimulus and response) from 250 to 500 ms or later depending upon the task [2] and on the individual subject response. [1] Amplitudes are typically highest on the scalp over parietal brain areas. [2]

Contents

The P3b has been a prominent tool used to study cognitive processes for several decades. More specifically, this ERP component has played a key role in cognitive psychology research on information processing. Generally speaking, improbable events will elicit a P3b, and the less probable the event, the larger the P3b. [3] However, in order to elicit a P3b, the improbable event must be related to the task at hand in some way (for example, the improbable event could be an infrequent target letter in a stream of letters, to which a subject might respond with a button press). The P3b can also be used to measure how demanding a task is on cognitive workload. [3]

History

Early observations of the P3b were reported in the mid-1960s. In 1964, researchers Chapman and Bragdon. [4] found that ERP responses to visual stimuli differed depending on whether the stimuli had meaning or not. They showed subjects two kinds of visual stimuli: numbers and flashes of light. Subjects viewed these stimuli one at a time in a sequence. For every two numbers, the subjects were required to make simple decisions, such as telling which of the two numbers was numerically smaller or larger, which came first or second in the sequence, or whether they were equal. When examining evoked potentials to these stimuli (i.e., ERPs), Chapman and Bragdon found that both the numbers and the flashes elicited the expected sensory responses (e.g., visual N1 components), and that the amplitude of these responses varied in an expected fashion with the intensity of the stimuli. They also found that the ERP responses to the numbers, but not to the light flashes, contained a large positivity that peaked around 300 ms after the stimulus appeared. [4] They also noted that the amplitude of this positivity was not affected by the intensity of the stimulus. Chapman and Bragdon speculated that this differential response to the numbers, which came to be known as the P300 response, resulted from the fact that the numbers were meaningful to the participants, based on the task that they were asked to perform.

In 1965, Sutton and colleagues published results from two experiments that further explored this late positivity. They presented subjects with either a cue that indicated whether the following stimulus would be a click or a flash, or a cue which required subjects to guess whether the following stimulus would be a click or a flash. They found that when subjects were required to guess what the following stimulus would be, the amplitude of the "late positive complex" [5] was larger than when they knew what the stimulus would be. In a second experiment, [5] they presented two cue types. For one cue there was a 2 in 3 chance that the following stimulus would be a click and a 1 in 3 chance that the following stimulus would be a flash. The second cue type had probabilities that were the reverse of the first. They found that the amplitude of the positive complex was larger in response to the less probable stimuli, or the one that only had a 1 in 3 chance of appearing. Another important finding from these studies is that this late positive complex was observed for both the clicks and flashes, indicating that the physical type of the stimulus (auditory or visual) did not matter. [5]

In later studies published in 1967, Sutton and colleagues had subjects guess whether they would hear one click or two clicks. [6] They observed a positivity around 300 ms after the second click occurred or would have occurred in the case of the single click. They also had subjects guess how long the interval between clicks might be, and the late positivity occurred 300 ms after the second click. [6] This shows two important findings: first that this late positivity occurred when the uncertainty about the type of click was resolved, and second that even an absence of a stimulus, when it was relevant to the task, would elicit the late positive complex. These early studies encouraged the use of ERP methods to study cognition and provided a foundation for the extensive work on the P3b in the decades that followed. [7]

Since the initial discovery of this ERP component, research has shown that the P300 is not a unitary phenomenon. Rather, we can distinguish between two subcomponents of the P300: the novelty P3, or P3a, and the classic P3, or P3b. [8] This article focuses on the P3b.

Component characteristics

Assuming that a cephalic reference is used (i.e., a reference electrode placed somewhere on the head, such as the tip of the nose or the chin), the P3b is a positive-going ERP whose latency at peak amplitude is usually about 300 ms to simple sensory stimuli. [5] Amplitude has been defined as the difference between the mean pre-stimulus baseline voltage and the voltage of the largest (in this case, positive-going) peak of the ERP waveform in a specific time window. [2] P3b amplitude is generally relatively large (10–20 microvolts [9] ), but varies systematically as a function of a number of important factors (see Functional significance: Factors that influence amplitude). Latency has been defined as the time from the onset of the stimulus (or whatever the desired point of measurement might be) to the point of maximum amplitude. [2] The latency of the P3b is usually around 300 ms, though this can vary within a time window of around 250–500 ms (or later) depending on factors such as task conditions and the age of the subjects [10] (see Functional significance: Factors influence latency).

The scalp distribution of P3b is generally larger over parietal areas. [2] However, using a 15-electrode setup with a linked-earlobe reference and an oddball task (described below), researchers have also found that the positivity increased moving from frontal to parietal sites, and that females have a greater increase than males. [11] Other research, using the International 10-20 System with a left mastoid reference and an oddball task, has shown that with increasing age, the distribution of P3b tends to shift more frontally. [10] Thus, the exact distribution may be dependent upon the task, as well as the gender and age of the subjects.

Main paradigms

The P3b can be observed in a variety of experimental contexts. The most common paradigms will either present infrequent, task-relevant stimuli as a way to elicit a P3b, or they will employ two tasks at the same time to use P3b as a measure of cognitive workload. Of course, any experimental paradigm in which participants are instructed to attend to and evaluate stimuli should elicit a P3b component, including selective attention tasks, explicit memory tasks, and visual search tasks (for thorough reviews of experimental paradigms which have been used to elicit this component, see Kok, 2001 [12] and Verleger, 1997 [13] ).

Oddball paradigms

Two classic paradigms are the two-stimulus oddball task and the three-stimulus oddball task, the latter of which is used to examine both P3b and P3a. [11] In a classic two-stimulus oddball task, a sequence of visual stimuli is presented. For example, subjects might see a string of letters presented one at a time. A less frequent "target" or "oddball" stimulus such as the letter T is presented along with more frequent "standard" stimuli, such as the letter S. The subject is typically instructed to respond in some way (such as with a button press) only to the targets, and to ignore the standards. The P3b is typically observed around 300 ms after each presentation of the target (oddball) stimulus. [2]

A three-stimulus oddball task is exactly like the two-stimulus oddball task, except that in addition to the targets and standards, an infrequent, deviant stimulus such as the letter "D" will appear. These are often known as deviant standards, because they are not the target of the task but they differ from the regular standard. The P3b has been shown to respond only to task-relevant stimuli, or the targets that are actively being searched for (in this example, the letter T). Therefore, the deviant standard "D" will not elicit a strong P3b because it is not relevant to the task. However, the deviant standard will still elicit an earlier, positive-going potential that is usually higher over frontal sites known as the P3a. Unlike the P3b, the P3a will habituate with repeated presentations. [2]

Dual-task paradigms

Another set of paradigms used to study the P3b are dual task paradigms. There are several variations of the dual task paradigm, and they can be used to study cognitive workload (see Kok, 2001 [12] ). Workload can be defined as the amount of processing resources required for a particular task. In a dual-task paradigm, participants are given two tasks to perform simultaneously; a primary task and a secondary task. Though the primary task can be of virtually any type, the secondary task should involve some traditional P300 paradigm (e.g., an oddball task). When these tasks are performed concurrently, we would expect to see a reduction in P3b amplitude in response to the secondary task if the primary task requires some stimulus evaluation resources. Furthermore, the extent of this reduction is presumed to reflect the amount of workload associated with the primary task. In fact, there should be a reciprocal relationship between the amplitudes of the P3b response elicited by the primary and secondary tasks, respectively. If the primary task is easier (i.e., requires less stimulus evaluation resources), participants have more resources left over to devote to the secondary task. Conversely, if the primary task is harder (i.e., requires more stimulus evaluation resources), participants have less resources left over to devote to the secondary task.

To give an example, subjects might perform a primary task, such as tracking a visual object on a screen with a joystick, concurrently with a secondary task of mentally counting oddballs in an auditory stream. The difficulty of the primary task is usually manipulated in various ways, and the impacts of these manipulations on the P3b response to the secondary task are examined. For example, in one condition subjects might track the one-dimensional movement of an object (only up and down), and in the more difficult condition they might have to track two dimensional movement (any direction on a computer screen). [14] A motor manipulation like this will typically impact reaction times on the secondary task, but will not impact the P3b response. However, if you increase the demand on working memory or other cognitive resources during the primary task, for example by adding objects to the screen or only having subjects selectively attend to one part of the screen, the amplitude of the P3b in response to oddballs in the secondary task will diminish. The amount that it diminishes can be a measure of how many working memory or stimulus evaluation resources are being used by the primary task. [12]

In another variation of the dual-task paradigm, subjects are presented with a visual stream of items presented one at a time. In this stream there are two targets, each of which requires a separate response. The amount of time or items separating the two targets is varied, and the amplitude of the P3b in response to the second item is examined. Diminished amplitude of the P3b response to the second target would be expected when the first target required more processing or working memory resources. [15]

Functional significance: Factors that influence amplitude

Cognitive variables

The P300 response as a function of the global probability of the oddball stimulus. From Surprise response as a probe for compressed memory states. The ERP shows a larger P300 response magnitude to oddball stimuli and a lower P300 response to standard stimuli as the global oddball probability decreases. P300 vs oddballProbability.svg
The P300 response as a function of the global probability of the oddball stimulus. From Surprise response as a probe for compressed memory states. The ERP shows a larger P300 response magnitude to oddball stimuli and a lower P300 response to standard stimuli as the global oddball probability decreases.
The P300 response as a function of local stimulus probability. From Surprise response as a probe for compressed memory states. The P300 response magnitude for both oddball and standard trials is larger the higher is the local probability of the opposite stimulus in the preceding sequence. P300 vs local oddball probability.svg
The P300 response as a function of local stimulus probability. From Surprise response as a probe for compressed memory states. The P300 response magnitude for both oddball and standard trials is larger the higher is the local probability of the opposite stimulus in the preceding sequence.

Donchin stated that the less probable the event, the larger the P3b amplitude will be. [3] There are several types of probability that can affect P3b amplitude: global probability, or how frequent the targets are relative to the number of standards (for example, P3b amplitude is greater when targets make up 10 percent of the stimuli than when targets comprise 20 percent of the stimuli); [16] local probability, or the probability within the specific sequence of the events (for example, whether a target followed a standard or another target); [16] and temporal probability, or how frequently targets occur within a one-minute time period (whether standards are present or not). [17]

Ray "Skip" Johnson, Jr., now a professor at Queens College, published a triarchic model of P300 amplitude in 1986. [18] Although he does not explicitly refer to P3b in this paper, most of his discussions refer to P3b. He offered three things that affected the amplitude – subjective probability, stimulus meaning, and information transmission. He summarized his view in the following formula: P300 amplitude = f[T x (1/P + M)], where P is subjective probability, M is stimulus meaning, and T is information transmitted. [18] He describes subjective probability as objective probability with the added element of human judgment of how relevant a stimulus is to the task, and notes that P300 amplitude is directly related to the amount of uncertainty that is reduced by a stimulus. A closely related dependence between the P300 and subjective probability was shown by Levi-Aharoni et al. [1] who used a fuzzy, compressed representation of stimulus probability to explain the single-trial variability in the P300 response magnitude. However, it has also been found that P300 amplitude can change in the absence of changes in probability. Stimulus meaning therefore refers to variables that account for the processing of a stimulus that are not related to probability. (Recall that Chapman and Bragdon found that only the stimulus that had meaning in their experiment elicited the late positivity. [4] ) Stimulus meaning encompasses three independent variables that can be manipulated – task complexity (how difficult a task is, or how many tasks must be performed at once), stimulus complexity (perceptual demand, or how many relevant features of the stimulus must be processed – a face being more complex than a dot), and stimulus value (the significance, or for example the monetary value: the greater the value the larger the P300 amplitude). Information transmission is the proportion of stimulus information received by a person relative to how much information the stimulus originally contained. [18] There are external and internal manipulations of information transmission. When much information is lost for external reasons, for example because the stimulus is harder to discriminate or perceive, P300 amplitude is lower. Internal manipulations are variations in how much attention subjects are required or allowed to give to the stimulus. P3b requires attention, and increasing the difficulty of maintaining attention will correspondingly decrease P3b amplitude. To summarize, Johnson describes that probability on many levels, the relevance of the stimulus to the task, and the amount information a stimulus transmits are all variables that will determine P3b amplitude. [18]

More recently, Albert Kok reviewed the literature on cognitive workload, and concluded that P3b amplitude depends on the demands on cognitive capacity. [12] In dual-task paradigms like those described above, subjects are required to perform a primary and a secondary task. When the primary task is more perceptually and cognitively demanding, the P3b amplitude in response to oddballs in the secondary task is decreased. Kok also supports aspects of Johnson's theory, stating that the amount of attention allocated to a task, the relevance of the stimulus to the task, and the probability of the stimulus will all help determine what the P3b amplitude will be. [12]

Consistently with the models by Johnson and Kok, a model of the P300 response magnitude was proposed by Levi-Aharoni, Shriki and Tishby, [1] based on the Information Bottleneck framework [19] and a prediction-error model by Rubin et al. [20] Their results show that the single-trial variability in the P300 response magnitude can be explained by a subjective surprise that is constructed from compressed probability representations, dependent on the memory capacity allocated to the task and on the relevant features of preceding stimuli for predicting the upcoming stimulus. According to this model, the higher is the allocated memory capacity, the more accurate is the stimulus representation and the larger is the surprise response deviants are expected to elicit. Furthermore, based on this dependency they proposed a method to utilize the individual P300 response to obtain an estimate of individual recent memory capacity.

Gender, learning, and asymmetries

Other variables have been found to influence P3b amplitude. Some research using oddball tasks has indicated that females have larger P3b amplitudes than males, and that the amplitude increases more moving from frontal to parietal areas. [11] Other research has found that learning in a topic area can affect P3b amplitude in tasks related to that area. One study took a group of individuals and gave some of them training in standard musical chord progressions while the others remained untrained. [21] All were then given chord sequences that contained violations. Researchers found that those who had received prior training had greater P3b amplitudes in response to harmonic violations in musical sequences. This is presumably because those with training had more experience with the rules that govern harmonics, and therefore have a larger degree of expectancy for chord progressions and are more sensitive to deviance. [21] There is also some evidence to suggest that in all subjects, P3b amplitude is distributed asymmetrically over the scalp. Research has shown that P3b amplitudes are systematically larger over the right frontal and central hemispheres than the left, though there is some debate as to whether this is due to structural causes (such as skull thickness or cranial irregularities) or to cognitive causes. [22]

Clinical variables

A number of clinical variables such as age, disease, mental illness, and substance use have been studied in relation to P3b amplitude. Many of these studies do not refer to the P3b explicitly, but most use oddball tasks and thus would most likely have elicited a P3b. As previously noted, the topography of the amplitude of P3b tends to shift more frontally with age, [10] but amplitude in these frontal areas does not seem to be affected by age. [23] Another study using an auditory oddball task showed that P300 amplitude was enlarged in unmedicated individuals with mild Parkinson's disease when compared with healthy controls. The same study also used older and younger groups of individuals with Parkinson's disease, and found that age itself did not have an effect on amplitude. [24] Other studies have shown that individuals with schizophrenia have a marked reduction in P3b amplitude, suggesting impairments in working memory or other processing. [25] Substance use has also been shown to affect P3b. Some studies show that alcoholics have larger P300 amplitudes in response to an auditory oddball task, but that alcoholics who have many alcoholic relatives have lower P300 amplitudes when compared to controls. [26] This tendency for P3b amplitude to be weaker for those with a family history of alcoholism may be more general, in that other substance use disorders and related psychiatric disorders show the same reduction, often before the substance use was initiated. [27] This particular reduction in P3b amplitude may be due to weak neuromodulatory factors in the brains of those liable to develop substance use problems. [28] P300 amplitude also appears to be sensitive to pharmacological interventions. When twelve healthy subjects were given lorazepam (a benzodiazepine drug used to treat anxiety and sometimes depression) and asked to perform an oddball task, their P300 amplitude was reduced. [29] These studies and others have shown that conditions that tend to influence cognition (such as age, disease, mental illness, and substance use) affect the amplitude of P3b or its distribution.

Functional significance: Factors that influence latency

In line with the view that the P3b component reflects uncertainty resolution, there is evidence to suggest that time at which this component begins to appear in the ERP (i.e., its latency) corresponds to the time at which uncertainty is resolved. For example, Sutton et al. (1967) [6] performed a study in which they manipulated when uncertainty could be resolved. More specifically, participants were presented with either single or double (auditory) clicks that varied in intensity. In one condition, participants were asked to report the number of clicks they heard. When a double click occurred, the P3b response occurred approximately 300 ms after the second click. More importantly, the timing of the P3b response was almost identical when only a single click was presented, suggesting that this component was generated based upon when the second click might have occurred. In fact, when the duration between the two clicks was manipulated, the onset of the P3b was delayed by the exact amount of time between them (e.g., when the second click was presented 500 ms after the first one, the P3b response occurred at 800 ms). In contrast, when participants were instructed to respond based upon the intensity of the clicks, the P3b response always occurred approximately 300 ms after the first click. Presumably, participants could determine the intensity of the clicks based upon the first one; thus, the first click resolved their uncertainty.

If in fact the latency of the P3b component reflects the timing of uncertainty resolution, then one might expect the latency of this component to be closely related to the difficulty of the evaluation or categorization. In fact, there is now ample evidence to support this claim. For example, McCarthy & Donchin (1981) [30] presented participants with 3 x 3 matrices, each of which contained either the word 'LEFT' or the word 'RIGHT'. Their task was to respond when they located the direction word in the matrix, and the identity of the word determined what type of response they should make. McCarthy and Donchin found that the P3b component occurred significantly earlier when the rest of the items in the matrix were number signs (#), relative to when the rest of the items were random letters. In essence, the random letters served as "noise", which caused participants to take longer to identify the target word. Along these same lines, several other task manipulations which are thought to influence the difficulty of the evaluation or categorization involved have been found to influence P3b latency (e.g., decreasing the physical intensity of the stimuli; see Verleger, 1997 [13] for a review). Collectively, these findings suggest that P3b latency reflects the amount of time it takes participants to evaluate or categorize the stimulus in question.

Given that performance indices (such as response times) have long been used in cognitive psychology to study the duration and/or timing of mental events, one might ask whether P3b latency simply provides a comparable neural index of these same processes. Research suggests that P3b latency is highly correlated with response times when participants are instructed to prioritize accuracy in their responses, but is less correlated with response times when participants are instructed to prioritize speed in their responses. [31] This pattern of results suggests that the P3b primary reflects stimulus evaluation processes, whereas response times are thought to reflect both stimulus evaluation and response selection (but for a critique of this claim, see Verleger, 1997 [13] ). More specifically, when participants are instructed to prioritize speed (i.e., to respond as quickly as possible), they may respond before stimulus evaluation is complete (which is consistent with the fact that participants tend to make more errors under these conditions). Additional support for this conclusion comes from the finding that P3b latency is not affected by experimental manipulations thought to influence response selection processes (e.g., stimulus-response compatibility), whereas reaction times are (e.g., McCarthy & Donchin, 1981 [30] ). An important implication of this conclusion is that the P3b component can used to identify the "locus of interference" in many popular cognitive paradigms. For example, Luck (1998) [15] found that P3b latency was only slightly delayed during the psychological refractory period (PRP), suggesting that response time interference in this paradigm primarily reflects a delay in response selection.

Other factors which have been found to influence the latency of the P3b response include factors related to physiological arousal, such as heart rate and caffeine consumption, [9] as well as factors related to cognitive capacity, such as age and differences in how rapidly individuals can allocate attentional resources. [2]

Theory

Several theories have been put forward about what cognitive processes the P3b reflects. Donchin [3] proposed a "context updating model". This model posits that the brain constantly and automatically generates hypotheses about the environment and what it is about to experience. A P300 wave, including a P3b, is generated when the brain receives information that indicates that it needs to change these hypotheses, or update its mental model of the world. In other words, a P300 is elicited whenever there is sufficient information to indicate that the brain needs to update working memory. [3] Though the "context updating" account is well supported by existing research, several alternative theories have been proposed. For example, Verleger and colleagues (2005) [32] have proposed that the P3b component reflects a process that mediates between perceptual analysis and response initiation. More specifically, this process emerges from a cognitive mechanism responsible for monitoring whether the classification of a stimulus is appropriately translated into action. [32] This theory constitutes a direct challenge to the widely held view that the P3b component reflects processes involved in perception but not response initiation (see Verleger, 1997 [13] ).

Another theory proposed by Kok [12] proposed that the P3b reflects mechanisms involved in event categorization, or the process that leads to the decision about whether an external stimulus matches or does not match an internal representation of a specific category or stimulus. Categorization requires processes such as attention, perception, and working memory, all of which are known to affect P3b amplitude (as reviewed above), and thus this model integrates the research findings on P3b. Kok also discusses another "template-matching model", where subjects are required to detect a target and create a representation or "template" of the stimulus, and the P3b is strongest when the template is matched by presented stimuli. The template-matching model is similar to the event categorization model, and suggests that the P3b reflects processes that underlie recognition memory (which can also require working memory.) [12] The event-categorization model has similarities to the model proposed by Verleger that suggests that the P3 is generated during the "closure" of a perceptual cycle. [12] The cognitive version of Verleger's model suggests that the P3b is generated when a decision is made that a stimulus belongs to a task-relevant category. [33] As Kok [12] summarizes, P3b appears to integrate processes that are required to identify and match a stimulus with some kind of internal representation.

Neural origins

The neural generators of the P3b are highly debated. Early studies using electrodes implanted in the brain indicated that the hippocampal formation might generate the P300. [33] However, later work found that if the hippocampus is lesioned or damaged, the P300 is still generated and no reliable differences in its amplitude or latency are observed. Subsequent research found that lesioning the temporal-parietal lobe junction significantly affected P300 production, indicating that this area may contain one or more generators of the P3b. [33] This suggests that the P3b might indicate some kind of circuit pathway between frontal and temporal/parietal brain areas. [2] A temporal-parietal generator would be logical, because P3b appears to be elicited when attentional resource activations promote working memory and other processes in temporal-parietal areas. [2] Further EEG research utilizing source modeling techniques, along with research using alternative brain imaging methods (e.g., fMRI, MEG), intracranial recordings, and brain injury patients, has also indicated that the P3b component originates from activation in the parietal and temporal lobes of the cerebral cortex. [2] There is also some evidence that activation is certain limbic structures, such as the anterior cingulate cortex, may contribute to the P3b component. [12]

It is not yet known which neurotransmitter systems are responsible for the generation of P3b. The temporal-parietal region is densely populated by norepenepherine inputs, [2] and there is some evidence that the locus coeruleus norepinephrine system might be responsible for generating the P3b. [2] Because many of these studies were conducted using animals, further research is needed to determine the neurotransmitters that are responsible for P3b generation.

See also

Related Research Articles

<span class="mw-page-title-main">Event-related potential</span> Brain response that is the direct result of a specific sensory, cognitive, or motor event

An event-related potential (ERP) is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped electrophysiological response to a stimulus. The study of the brain in this way provides a noninvasive means of evaluating brain functioning.

The N400 is a component of time-locked EEG signals known as event-related potentials (ERP). It is a negative-going deflection that peaks around 400 milliseconds post-stimulus onset, although it can extend from 250-500 ms, and is typically maximal over centro-parietal electrode sites. The N400 is part of the normal brain response to words and other meaningful stimuli, including visual and auditory words, sign language signs, pictures, faces, environmental sounds, and smells.

<span class="mw-page-title-main">P300 (neuroscience)</span> Event-related potential

The P300 (P3) wave is an event-related potential (ERP) component elicited in the process of decision making. It is considered to be an endogenous potential, as its occurrence links not to the physical attributes of a stimulus, but to a person's reaction to it. More specifically, the P300 is thought to reflect processes involved in stimulus evaluation or categorization.

The mismatch negativity (MMN) or mismatch field (MMF) is a component of the event-related potential (ERP) to an odd stimulus in a sequence of stimuli. It arises from electrical activity in the brain and is studied within the field of cognitive neuroscience and psychology. It can occur in any sensory system, but has most frequently been studied for hearing and for vision, in which case it is abbreviated to vMMN. The (v)MMN occurs after an infrequent change in a repetitive sequence of stimuli For example, a rare deviant (d) stimulus can be interspersed among a series of frequent standard (s) stimuli. In hearing, a deviant sound can differ from the standards in one or more perceptual features such as pitch, duration, loudness, or location. The MMN can be elicited regardless of whether someone is paying attention to the sequence. During auditory sequences, a person can be reading or watching a silent subtitled movie, yet still show a clear MMN. In the case of visual stimuli, the MMN occurs after an infrequent change in a repetitive sequence of images.

The contingent negative variation (CNV) is a negative slow surface potential, as measured by electroencephalography (EEG), that occurs during the period between a warning stimulus or signal and an imperative ("go") stimulus. The CNV was one of the first event-related potential (ERP) components to be described. The CNV component was first described by W. Grey Walter and colleagues in an article published in Nature in 1964. The importance of this finding was that it was one of the first studies which showed that consistent patterns of the amplitude of electric responses could be obtained from the large background noise which occurs in EEG recordings and that this activity could be related to a cognitive process such as expectancy.

In neuroscience, the lateralized readiness potential (LRP) is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the brain that happens when a person gets ready to move one arm, leg, or foot. It is a special form of bereitschaftspotential. LRPs are recorded using electroencephalography (EEG) and have numerous applications in cognitive neuroscience.

In neuroscience, the N100 or N1 is a large, negative-going evoked potential measured by electroencephalography ; it peaks in adults between 80 and 120 milliseconds after the onset of a stimulus, and is distributed mostly over the fronto-central region of the scalp. It is elicited by any unpredictable stimulus in the absence of task demands. It is often referred to with the following P200 evoked potential as the "N100-P200" or "N1-P2" complex. While most research focuses on auditory stimuli, the N100 also occurs for visual, olfactory, heat, pain, balance, respiration blocking, and somatosensory stimuli.

Difference due to memory (Dm) indexes differences in neural activity during the study phase of an experiment for items that subsequently are remembered compared to items that are later forgotten. It is mainly discussed as an event-related potential (ERP) effect that appears in studies employing a subsequent memory paradigm, in which ERPs are recorded when a participant is studying a list of materials and trials are sorted as a function of whether they go on to be remembered or not in the test phase. For meaningful study material, such as words or line drawings, items that are subsequently remembered typically elicit a more positive waveform during the study phase. This difference typically occurs in the range of 400–800 milliseconds (ms) and is generally greatest over centro-parietal recording sites, although these characteristics are modulated by many factors.

The P3a, or novelty P3, is a component of time-locked (EEG) signals known as event-related potentials (ERP). The P3a is a positive-going scalp-recorded brain potential that has a maximum amplitude over frontal/central electrode sites with a peak latency falling in the range of 250–280 ms. The P3a has been associated with brain activity related to the engagement of attention and the processing of novelty.

In neuroscience, the visual P200 or P2 is a waveform component or feature of the event-related potential (ERP) measured at the human scalp. Like other potential changes measurable from the scalp, this effect is believed to reflect the post-synaptic activity of a specific neural process. The P2 component, also known as the P200, is so named because it is a positive going electrical potential that peaks at about 200 milliseconds after the onset of some external stimulus. This component is often distributed around the centro-frontal and the parieto-occipital areas of the scalp. It is generally found to be maximal around the vertex of the scalp, however there have been some topographical differences noted in ERP studies of the P2 in different experimental conditions.

<span class="mw-page-title-main">Visual N1</span>

The visual N1 is a visual evoked potential, a type of event-related electrical potential (ERP), that is produced in the brain and recorded on the scalp. The N1 is so named to reflect the polarity and typical timing of the component. The "N" indicates that the polarity of the component is negative with respect to an average mastoid reference. The "1" originally indicated that it was the first negative-going component, but it now better indexes the typical peak of this component, which is around 150 to 200 milliseconds post-stimulus. The N1 deflection may be detected at most recording sites, including the occipital, parietal, central, and frontal electrode sites. Although, the visual N1 is widely distributed over the entire scalp, it peaks earlier over frontal than posterior regions of the scalp, suggestive of distinct neural and/or cognitive correlates. The N1 is elicited by visual stimuli, and is part of the visual evoked potential – a series of voltage deflections observed in response to visual onsets, offsets, and changes. Both the right and left hemispheres generate an N1, but the laterality of the N1 depends on whether a stimulus is presented centrally, laterally, or bilaterally. When a stimulus is presented centrally, the N1 is bilateral. When presented laterally, the N1 is larger, earlier, and contralateral to the visual field of the stimulus. When two visual stimuli are presented, one in each visual field, the N1 is bilateral. In the latter case, the N1's asymmetrical skewedness is modulated by attention. Additionally, its amplitude is influenced by selective attention, and thus it has been used to study a variety of attentional processes.

The N200, or N2, is an event-related potential (ERP) component. An ERP can be monitored using a non-invasive electroencephalography (EEG) cap that is fitted over the scalp on human subjects. An EEG cap allows researchers and clinicians to monitor the minute electrical activity that reaches the surface of the scalp from post-synaptic potentials in neurons, which fluctuate in relation to cognitive processing. EEG provides millisecond-level temporal resolution and is therefore known as one of the most direct measures of covert mental operations in the brain. The N200 in particular is a negative-going wave that peaks 200-350ms post-stimulus and is found primarily over anterior scalp sites. Past research focused on the N200 as a mismatch detector, but it has also been found to reflect executive cognitive control functions, and has recently been used in the study of language.

Error-related negativity (ERN), sometimes referred to as the Ne, is a component of an event-related potential (ERP). ERPs are electrical activity in the brain as measured through electroencephalography (EEG) and time-locked to an external event or a response. A robust ERN component is observed after errors are committed during various choice tasks, even when the participant is not explicitly aware of making the error; however, in the case of unconscious errors the ERN is reduced. An ERN is also observed when non-human primates commit errors.

Somatosensory evoked potential is the electrical activity of the brain that results from the stimulation of touch. SEP tests measure that activity and are a useful, noninvasive means of assessing somatosensory system functioning. By combining SEP recordings at different levels of the somatosensory pathways, it is possible to assess the transmission of the afferent volley from the periphery up to the cortex. SEP components include a series of positive and negative deflections that can be elicited by virtually any sensory stimuli. For example, SEPs can be obtained in response to a brief mechanical impact on the fingertip or to air puffs. However, SEPs are most commonly elicited by bipolar transcutaneous electrical stimulation applied on the skin over the trajectory of peripheral nerves of the upper limb or lower limb, and then recorded from the scalp. In general, somatosensory stimuli evoke early cortical components, generated in the contralateral primary somatosensory cortex (S1), related to the processing of the physical stimulus attributes. About 100 ms after stimulus application, additional cortical regions are activated, such as the secondary somatosensory cortex (S2), and the posterior parietal and frontal cortices, marked by a parietal P100 and bilateral frontal N140. SEPs are routinely used in neurology today to confirm and localize sensory abnormalities, to identify silent lesions and to monitor changes during surgical procedures.

The late positive component or late positive complex (LPC) is a positive-going event-related brain potential (ERP) component that has been important in studies of explicit recognition memory. It is generally found to be largest over parietal scalp sites, beginning around 400–500 ms after the onset of a stimulus and lasting for a few hundred milliseconds. It is an important part of the ERP "old/new" effect, which may also include modulations of an earlier component similar to an N400. Similar positivities have sometimes been referred to as the P3b, P300, and P600. Here, we use the term "LPC" in reference to this late positive component.

The C1 and P1 are two human scalp-recorded event-related brain potential components, collected by means of a technique called electroencephalography (EEG). The C1 is named so because it was the first component in a series of components found to respond to visual stimuli when it was first discovered. It can be a negative-going component or a positive going component with its peak normally observed in the 65–90 ms range post-stimulus onset. The P1 is called the P1 because it is the first positive-going component and its peak is normally observed in around 100 ms. Both components are related to processing of visual stimuli and are under the category of potentials called visually evoked potentials (VEPs). Both components are theorized to be evoked within the visual cortices of the brain with C1 being linked to the primary visual cortex of the human brain and the P1 being linked to other visual areas. One of the primary distinctions between these two components is that, whereas the P1 can be modulated by attention, the C1 has been typically found to be invariable to different levels of attention.

The N170 is a component of the event-related potential (ERP) that reflects the neural processing of faces, familiar objects or words. Furthermore, the N170 is modulated by prediction error processes.

N2pc refers to an ERP component linked to selective attention. The N2pc appears over visual cortex contralateral to the location in space to which subjects are attending; if subjects pay attention to the left side of the visual field, the N2pc appears in the right hemisphere of the brain, and vice versa. This characteristic makes it a useful tool for directly measuring the general direction of a person's attention with fine-grained temporal resolution.

The oddball paradigm is an experimental design used within psychology research. Presentations of sequences of repetitive stimuli are infrequently interrupted by a deviant stimulus. The reaction of the participant to this "oddball" stimulus is recorded.

Linguistic prediction is a phenomenon in psycholinguistics occurring whenever information about a word or other linguistic unit is activated before that unit is actually encountered. Evidence from eyetracking, event-related potentials, and other experimental methods indicates that in addition to integrating each subsequent word into the context formed by previously encountered words, language users may, under certain conditions, try to predict upcoming words. In particular, prediction seems to occur regularly when the context of a sentence greatly limits the possible words that have not yet been revealed. For instance, a person listening to a sentence like, "In the summer it is hot, and in the winter it is..." would be highly likely to predict the sentence completion "cold" in advance of actually hearing it. A form of prediction is also thought to occur in some types of lexical priming, a phenomenon whereby a word becomes easier to process if it is preceded by a related word. Linguistic prediction is an active area of research in psycholinguistics and cognitive neuroscience.

References

  1. 1 2 3 4 5 6 Levi-Aharoni H, Shriki O, Tishby N (February 2020). "Surprise response as a probe for compressed memory states". PLOS Computational Biology. 16 (2): e1007065. Bibcode:2020PLSCB..16E7065L. doi: 10.1371/journal.pcbi.1007065 . PMC   7018098 . PMID   32012146.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Polich J (October 2007). "Updating P300: an integrative theory of P3a and P3b". Clinical Neurophysiology. 118 (10): 2128–48. doi:10.1016/j.clinph.2007.04.019. PMC   2715154 . PMID   17573239.
  3. 1 2 3 4 5 Donchin E (September 1981). "Presidential address, 1980. Surprise!...Surprise?". Psychophysiology. 18 (5): 493–513. doi: 10.1111/j.1469-8986.1981.tb01815.x . PMID   7280146.
  4. 1 2 3 Chapman RM, Bragdon HR (September 1964). "Evoked Responses to Numerical and Non-Numerical Visual Stimuli while Problem Solving". Nature. 203 (4950): 1155–7. Bibcode:1964Natur.203.1155C. doi:10.1038/2031155a0. PMID   14213667. S2CID   4156804.
  5. 1 2 3 4 Sutton S, Braren M, Zubin J, John ER (November 1965). "Evoked-potential correlates of stimulus uncertainty". Science. 150 (3700): 1187–8. Bibcode:1965Sci...150.1187S. doi:10.1126/science.150.3700.1187. PMID   5852977. S2CID   39822117.
  6. 1 2 3 Sutton S, Tueting P, Zubin J, John ER (March 1967). "Information delivery and the sensory evoked potential". Science. 155 (3768): 1436–9. Bibcode:1967Sci...155.1436S. doi:10.1126/science.155.3768.1436. PMID   6018511. S2CID   36787865.
  7. Bashore TR, van der Molen MW (1991). "Discovery of the P300: a tribute". Biological Psychology. 32 (2–3): 155–71. doi:10.1016/0301-0511(91)90007-4. PMID   1790268. S2CID   33317228.
  8. Squires NK, Squires KC, Hillyard SA (April 1975). "Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man". Electroencephalography and Clinical Neurophysiology. 38 (4): 387–401. CiteSeerX   10.1.1.326.332 . doi:10.1016/0013-4694(75)90263-1. PMID   46819. S2CID   4614708.
  9. 1 2 Polich J, Kok A (October 1995). "Cognitive and biological determinants of P300: an integrative review". Biological Psychology. 41 (2): 103–46. doi:10.1016/0301-0511(95)05130-9. PMID   8534788. S2CID   20671251.
  10. 1 2 3 Fjell AM, Walhovd KB, Reinvang I (September 2005). "Age-dependent changes in distribution of P3a/P3b amplitude and thickness of the cerebral cortex". NeuroReport. 16 (13): 1451–4. doi:10.1097/01.wnr.0000177011.44602.17. PMID   16110270. S2CID   34836160.
  11. 1 2 3 Conroy MA, Polich J (2007). "Normative variation of P3a and P3b from a large sample (N=120): Gender, topography, and response time". Journal of Psychophysiology. 21 (1): 22–32. doi:10.1027/0269-8803.21.1.22.
  12. 1 2 3 4 5 6 7 8 9 10 Kok A (May 2001). "On the utility of P3 amplitude as a measure of processing capacity". Psychophysiology. 38 (3): 557–77. doi:10.1017/S0048577201990559. PMID   11352145.
  13. 1 2 3 4 Verleger R (March 1997). "On the utility of P3 latency as an index of mental chronometry". Psychophysiology. 34 (2): 131–56. doi:10.1111/j.1469-8986.1997.tb02125.x. PMID   9090263.
  14. Isreal JB, Chesney GL, Wickens CD, Donchin E (May 1980). "P300 and tracking difficulty: evidence for multiple resources in dual-task performance". Psychophysiology. 17 (3): 259–73. doi:10.1111/j.1469-8986.1980.tb00146.x. PMID   7384376.
  15. 1 2 Luck SJ (1998). "Sources of dual-task interference: Evidence from human electrophysiology". Psychological Science. 9 (3): 223–227. doi:10.1111/1467-9280.00043. S2CID   17230263.
  16. 1 2 Duncan-Johnson CC, Donchin E (September 1977). "On quantifying surprise: the variation of event-related potentials with subjective probability". Psychophysiology. 14 (5): 456–67. doi:10.1111/j.1469-8986.1977.tb01312.x. PMID   905483.
  17. Polich J, Margala C (February 1997). "P300 and probability: comparison of oddball and single-stimulus paradigms". International Journal of Psychophysiology. 25 (2): 169–76. doi:10.1016/S0167-8760(96)00742-8. PMID   9101341.
  18. 1 2 3 4 Johnson R (July 1986). "A triarchic model of P300 amplitude". Psychophysiology. 23 (4): 367–84. doi: 10.1111/j.1469-8986.1986.tb00649.x . PMID   3774922.
  19. Tishby N, Pereira FC, Bialek W (September 1999). The Information Bottleneck Method (PDF). The 37th annual Allerton Conference on Communication, Control, and Computing. pp. 368–377.
  20. Rubin J, Ulanovsky N, Nelken I, Tishby N (August 2016). Theunissen FE (ed.). "The Representation of Prediction Error in Auditory Cortex". PLOS Computational Biology. 12 (8): e1005058. Bibcode:2016PLSCB..12E5058R. doi: 10.1371/journal.pcbi.1005058 . PMC   4973877 . PMID   27490251.
  21. 1 2 Carrión RE, Bly BM (September 2008). "The effects of learning on event-related potential correlates of musical expectancy". Psychophysiology. 45 (5): 759–75. doi:10.1111/j.1469-8986.2008.00687.x. PMID   18665861.
  22. Alexander JE, Porjesz B, Bauer LO, Kuperman S, Morzorati S, O'Connor SJ, et al. (September 1995). "P300 hemispheric amplitude asymmetries from a visual oddball task". Psychophysiology. 32 (5): 467–75. doi:10.1111/j.1469-8986.1995.tb02098.x. PMID   7568641.
  23. Ortiz T, Martin-Loeches M, Vila E (1990). "Frontal lobes and aging effect on the P300 component of the auditory event-related potentials". Applied Psychology: An International Review. 39 (3): 323–330. doi:10.1111/j.1464-0597.1990.tb01057.x.
  24. Green J, Woodard JL, Sirockman BE, Zakers GO, Maier CL, Green RC, Watts RL (January 1996). "Event-related potential P3 change in mild Parkinson's disease". Movement Disorders. 11 (1): 32–42. doi:10.1002/mds.870110108. PMID   8771065. S2CID   23967814.
  25. Friedman D, Squires-Wheeler E (1994). "Event-related potentials (ERPs) as indicators of risk for schizophrenia". Schizophrenia Bulletin. 20 (1): 63–74. doi:10.1093/schbul/20.1.63. PMID   8197422.
  26. Cohen HL, Wang W, Porjesz B, Begleiter H (April 1995). "Auditory P300 in young alcoholics: regional response characteristics". Alcoholism: Clinical and Experimental Research. 19 (2): 469–75. CiteSeerX   10.1.1.418.6561 . doi:10.1111/j.1530-0277.1995.tb01533.x. PMID   7625584.
  27. Iacono WG, Carlson SR, Malone SM, McGue M, et al. (August 2002). "P3 event-related potential amplitude and the risk for disinhibitory disorders in adolescent boys". Archives of General Psychiatry. 59 (8): 750–7. doi: 10.1001/archpsyc.59.8.750 . PMID   12150652.
  28. Burwell SJ, Malone SM, Bernat EM, Iacono WG, et al. (October 2014). "Does electroencephalogram phase variability account for reduced P3 brain potential in externalizing disorders?". Clinical Neurophysiology. 125 (10): 2007–15. doi:10.1016/j.clinph.2014.02.020. PMC   4156932 . PMID   24656843.
  29. Pooviboonsuk P, Dalton JA, Curran HV, Lader MH (1996). "The effect of single doses of lorazepam on event-related potentials and cognitive function". Human Psychopharmacology. 11 (3): 241–252. doi: 10.1002/(SICI)1099-1077(199605)11:3<241::AID-HUP795>3.0.CO;2-0 . S2CID   143341147.
  30. 1 2 McCarthy G, Donchin E (January 1981). "A metric for thought: a comparison of P300 latency and reaction time". Science. 211 (4477): 77–80. Bibcode:1981Sci...211...77M. doi:10.1126/science.7444452. PMID   7444452.
  31. Kutas M, McCarthy G, Donchin E (August 1977). "Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time" (PDF). Science. 197 (4305): 792–5. Bibcode:1977Sci...197..792K. doi:10.1126/science.887923. PMID   887923.
  32. 1 2 Verleger R, Jaśkowski P, Wascher E (2005). "Evidence for an integrative role of P3b in linking reaction to perception". Journal of Psychophysiology. 19 (3): 165–181. doi:10.1027/0269-8803.19.3.165.
  33. 1 2 3 Polich J, Criado JR (May 2006). "Neuropsychology and neuropharmacology of P3a and P3b". International Journal of Psychophysiology. 60 (2): 172–85. doi:10.1016/j.ijpsycho.2005.12.012. PMID   16510201.