Error-related negativity

Last updated

Error-related negativity (ERN), sometimes referred to as the Ne, is a component of an event-related potential (ERP). ERPs are electrical activity in the brain as measured through electroencephalography (EEG) and time-locked to an external event (e.g., presentation of a visual stimulus) or a response (e.g. an error of commission). A robust ERN component is observed after errors are committed during various choice tasks, even when the participant is not explicitly aware of making the error; [1] however, in the case of unconscious errors the ERN is reduced. [2] [3] An ERN is also observed when non-human primates commit errors. [4]

Contents

History

The ERN was first discovered in 1968 by Natalia Bekhtereva and was called "error detector". [5] [6] Later in 1990 ERN was developed by two independent research teams; Michael Falkenstein, J. Hohnsbein, J. Hoormann, & L. Blanke (1990) at the Institute for Work Physiology and Neurophysiology in Dortmund, Germany (who called it the "Ne"), and W.J. "Bill" Gehring, M.G.H. Coles, D.E. Meyer & E. Donchin (1990) at the University of Michigan, USA. [7] [8] The ERN was observed in response to errors committed by study participants during simple choice response tasks.

Component characteristics

The ERN is a sharp negative going signal which begins about the same time an incorrect motor response begins, (response locked event-related potential), and typically peaks from 80 to 150 milliseconds (ms) after the erroneous response begins (or 40-80 ms after the onset of electromyographic activity). [9] [10] [11] [12] [13] [2] The ERN is the largest at frontal and central electrode sites. [2] A typical method for determining the average ERN amplitude for an individual involves calculating the peak-to-peak difference in voltage between the average of the most negative peaks 1-150 ms after response onset, and the average amplitude of positive peaks 100-0 ms before response onset. [14] For optimal resolution of the signal, reference electrodes are typically placed behind both ears using either hardware or arithmetically linked mastoid electrodes. [10]

Main paradigms

Any paradigm in which mistakes are made during motor responses can be used to measure the ERN. Natural keyboarding is one such example where typing errors are shown to elicit ERN. [15] The most important feature of any ERN paradigm is obtaining a sufficient number of errors in the participant's responses, and the number of trials needed to obtain reliable scores can vary widely, which is particularly relevant for studies of individual differences. [16] Early experiments identifying the component used a variety of techniques, including word and tone identification, and categorical discrimination (e.g. are the following an animal?). [8] [17] [18] However, the majority of experimental paradigms that elicit ERN deflections have been a variant on the Eriksen "Flanker", [14] [19] and "Go/NoGo". [20] In addition to responses with the hands, the ERN can also be measured in paradigms where the task is performed with the feet [21] or with vocal responses as in the Stroop paradigm. [22]

A standard Flanker task involves discerning the central "target" letter from a string of distracting "flanker" letters which surround it. For example, congruous letter strings such as "SSSSS" or "HHHHH" and incongruous letter strings such as "HHSHH" or "SSHSS" may be presented on a computer screen. Each target letter would be assigned a key stroke response on a keyboard, such as "S" = right shift key and "H" = left shift key. Presentation of each letter string is brief, generally less than 100 ms, and central on the screen. Participants have approximately 2000 ms to respond before the next presentation. The most simple Go/NoGo tasks involve assigning a property of discernment to responding "Go" or not responding "NoGo." For example, again congruous letter strings such as "SSSSS" or "HHHHH" and incongruous letter strings such as "HHSHH" or "SSHSS" may be presented on a computer screen. The participant could be instructed to respond by pressing the space bar, only for congruous strings, and to not respond when presented with incongruous letter strings. More complicated Go/NoGo tasks are usually created when the ERN is the component of interest however, because in order to observe the robust negativity errors must be made. The classic Stroop paradigm involves a color-word task. Color words such as "red, yellow, orange, green" are presented centrally on a computer screen either in a color congruent with the word, ("red" in the color red) or in a color incongruent with the word ("red" in the color yellow). Participants may be asked to verbalize the color each word is written in. Incongruent and congruent presentations of the words can be manipulated to different rates, such as 25/75, 50/50, 30/70 etc. Studies of ERN across flanker, Stroop, and Go/NoGo tasks support convergent validity of ERN, but convergent validity of ERN difference scores is not supported, suggesting there might task-specific differences in ERN difference scores. [23]

Functional sensitivity

The amplitude of the ERN is sensitive to the intent and motivation of participants. When a participant is instructed to strive for accuracy in responses, observed amplitudes are typically larger than when participants are instructed to strive for speed. [14] Monetary incentives typically result in larger amplitudes as well. [24] Latency of the ERN peak amplitude can also vary between subjects, and does so reliably in special populations such as those diagnosed with ADHD, who show shorter latencies. [25] Participants with clinically diagnosed Obsessive Compulsive Disorder have exhibited ERN deflections with increased amplitude, prolonged latency, and a more posterior topography compared to clinically normal participants. [26] [27] [28] ERN latency has been manipulated through rapid feedback, wherein participants who received rapid feedback regarding the incorrect response subsequently showed shorter ERN peak latencies. [29] Additionally, a heightened ERN amplitude during social situations has been linked to anxiety symptoms in both childhood and adulthood. [30] [31] [32]

Developmental studies have shown that the ERN emerges throughout childhood and adolescence becoming more negative in amplitude and with a more defined peak. [33] [34] The ERN appears to be modulated by the environment during childhood, with children who experience early adversity showing evidence of less negative ERN amplitudes. [34] [35]

Theory/source

Although it is difficult to localize the origin of an ERP signal, extensive empirical research indicates that the ERN is most likely generated in the Anterior cingulate cortex (ACC) area of the brain. This conclusion is supported by fMRI, [36] [37] and brain lesion research, [38] as well as dipole source modeling. [39] The Dorsolateral prefrontal cortex (DLPFC) may also be involved in the generation of the ERN to some degree, and it has been found that persons with higher levels of "absent-mindedness" have their ERN sourced more from that region. [40] [41]

There is some debate within the field about what the ERN reflects (see especially Burle, et al. [42] ) Some researchers maintain that the ERN is generated during the detection of or response to errors. [43] [44] Others argue that the ERN is generated by a comparison process [13] [42] or a conflict monitoring system, [45] [46] and not specific to errors. In contrast to the above cognitive theories, new models suggest that the ERN may reflect the motivational significance of a task [47] or perhaps the emotional reaction to making an error. [48] This later view is consistent with findings linking errors and the ERN to autonomic arousal [49] and defensive motivated states, [50] and with findings suggesting that the ERN is dissociable from cognitive factors, but not affective ones. [48] [51] Unfortunately, it is still unclear how to interpret differences in sizes of ERN, as both smaller and larger ERN have been interpreted as "better". [52]

A stimulus locked event-related potential is also observed following the presentation of negative feedback stimuli in a cognitive task indicating the outcome of a response, often referred to as the feedback ERN (fERN). [53] This has led some researchers to extend the error-detection account of the response ERN (rERN) to a generic error detection system. This position has been elaborated into a reinforcement learning account of the ERN, arguing that both the rERN and the fERN are products of prediction error signals carried by the dopamine system arriving in the anterior cingulate cortex indicating that events have gone worse than expected. [54] In this framework it is common to measure both the rERN and the fERN as the difference in voltage between correct and incorrect responses and feedback, respectively.

Clinical applications

Debates about psychiatric disorders often become "chicken and egg" conundrums; a relationship complicated by an incomplete understanding of the functional significance of ERN [52] . The ERN has been proposed as a potential arbitrator of this argument. A body of empirical research has shown that the ERN reflects a "trait" level difference in individual error processing; especially concerning anxiety, rather than a "state" level difference. [24] [55] For example; most people who experience depression do not feel depressed all of the time. Instead, they have periods of depressive "states" which may be minor and unique to an extreme situation such as death of a loved one, loss of employment, or major injury. However a person who has a depressive "trait" will have experienced more than one minor depressive "state" and usually at least one major depressive state, any of which may not be unique to an obviously extreme situation. [56] In fact, there is some evidence, albeit weak, that people with depression show small ERNs. [57] [58] Scientists are exploring the use of the ERN and other ERP signals in identifying people at risk for psychiatric disorders in hopes of implementing early interventions. People with addictive behaviors such as smoking, [59] alcoholism, [60] and substance abuse [55] have also shown differential ERN responses compared to individuals without the same addictive behavior.


Pre-movement positivity

The ERN is often preceded by a small positive voltage deflection with a latency in the interval of -200 to -50 milliseconds in the response-locked ERP in channels over the scalp vertex, which is sometimes referred to as the "positive peak preceding the Ne" or "PNe", [61] but more generally thought to reflect the pre-movement positivity (PMP) described by Deecke et al. (1969). [62] The PMP is thought to reflect a "go signal" by which pre-SMA and SMA permit a motor response to be carried out. [63] PMP is smaller before error motor responses than it is before correct motor responses, suggesting that it may be an important signal for discriminating erroneous from correct actions. Additionally, PMP is smaller in people who make more mistakes during the Flankers task and may have clinical utility in accident prone populations, such as youths with ADHD. [64]

The ERN is often followed by a positivity, known as the error-related positivity or Pe. The Pe is a positive deflection with a centro-parietal distribution. When elicited, the Pe can occur 200-500ms after making an incorrect response, following the error negativity (Ne, ERN), but is not evident on all error trials. [13] In particular, the Pe is dependent on awareness or ability to detect errors. [1] Pe is basically the same as the P300 wave associated with conscious sensations. [65] :128 Additionally, Vocat et al. (2008) [66] established the Ne and Pe not only have different topographical distributions, but have different generators. Source localization indicates that the Ne has a dipole in the anterior cingulate cortex and the Pe has a dipole in the posterior cingulate cortex. The Pe amplitude reflects the perception of the error, meaning with more awareness of the error, the amplitude of the Pe is larger. Falkenstein and colleagues (2000) have shown that the Pe is elicited on uncorrected trials and false alarm trials, suggesting it is not directly related to error correction. It thus seems to be related to error monitoring, albeit with different neural and cognitive roots from the error-related processing reflected in the Ne.

If the Pe reflects conscious error processing, then it might be expected to be different for people with deficits in conflict monitoring, such as ADHD and OCD. Whether this is true remains controversial. Some studies do indicate these conditions are associated with different Pe responses, [67] [68] whereas other studies have not replicated those findings. [69] [70] The Pe has also been used to evaluate error processing in patients with severe brain traumatic injury. In a study using a variation of the Stroop task, patients with severe traumatic brain injury associated with deficits in error processing were found to show a significantly smaller Pe on error trials when compared against the healthy controls. [71]

Some researchers argue that error-related negativity or error-related positivity is in fact, reward-related positivity. Reward-related positivity is also referred to as reward positivity, or RewP. [72] It has been suggested that ERP data is depicting neural positivity to rewards (aka reward positivity) rather than neural negativity to loss (aka error-related negativity). Thus, this shift in how we conceptualize neural responses to gains/losses allows us to further understand the underlying neural processes.

See also

Related Research Articles

<span class="mw-page-title-main">Anterior cingulate cortex</span> Brain region

In the human brain, the anterior cingulate cortex (ACC) is the frontal part of the cingulate cortex that resembles a "collar" surrounding the frontal part of the corpus callosum. It consists of Brodmann areas 24, 32, and 33.

<span class="mw-page-title-main">Event-related potential</span> Brain response that is the direct result of a specific sensory, cognitive, or motor event

An event-related potential (ERP) is the measured brain response that is the direct result of a specific sensory, cognitive, or motor event. More formally, it is any stereotyped electrophysiological response to a stimulus. The study of the brain in this way provides a noninvasive means of evaluating brain functioning.

The N400 is a component of time-locked EEG signals known as event-related potentials (ERP). It is a negative-going deflection that peaks around 400 milliseconds post-stimulus onset, although it can extend from 250-500 ms, and is typically maximal over centro-parietal electrode sites. The N400 is part of the normal brain response to words and other meaningful stimuli, including visual and auditory words, sign language signs, pictures, faces, environmental sounds, and smells.

Affective neuroscience is the study of how the brain processes emotions. This field combines neuroscience with the psychological study of personality, emotion, and mood. The basis of emotions and what emotions are remains an issue of debate within the field of affective neuroscience.

<span class="mw-page-title-main">P300 (neuroscience)</span> Event-related potential

The P300 (P3) wave is an event-related potential (ERP) component elicited in the process of decision making. It is considered to be an endogenous potential, as its occurrence links not to the physical attributes of a stimulus, but to a person's reaction to it. More specifically, the P300 is thought to reflect processes involved in stimulus evaluation or categorization.

The mismatch negativity (MMN) or mismatch field (MMF) is a component of the event-related potential (ERP) to an odd stimulus in a sequence of stimuli. It arises from electrical activity in the brain and is studied within the field of cognitive neuroscience and psychology. It can occur in any sensory system, but has most frequently been studied for hearing and for vision, in which case it is abbreviated to vMMN. The (v)MMN occurs after an infrequent change in a repetitive sequence of stimuli For example, a rare deviant (d) stimulus can be interspersed among a series of frequent standard (s) stimuli. In hearing, a deviant sound can differ from the standards in one or more perceptual features such as pitch, duration, loudness, or location. The MMN can be elicited regardless of whether someone is paying attention to the sequence. During auditory sequences, a person can be reading or watching a silent subtitled movie, yet still show a clear MMN. In the case of visual stimuli, the MMN occurs after an infrequent change in a repetitive sequence of images.

The contingent negative variation (CNV) is a negative slow surface potential, as measured by electroencephalography (EEG), that occurs during the period between a warning stimulus or signal and an imperative ("go") stimulus. The CNV was one of the first event-related potential (ERP) components to be described. The CNV component was first described by W. Grey Walter and colleagues in an article published in Nature in 1964. The importance of this finding was that it was one of the first studies which showed that consistent patterns of the amplitude of electric responses could be obtained from the large background noise which occurs in EEG recordings and that this activity could be related to a cognitive process such as expectancy.

In cognitive psychology, the Eriksen flanker task is a set of response inhibition tests used to assess the ability to suppress responses that are inappropriate in a particular context. The target is flanked by non-target stimuli which correspond either to the same directional response as the target, to the opposite response, or to neither. The task is named for American psychologists Barbara. A. Eriksen & Charles W. Eriksen, who first published the task in 1974, and for the flanker stimuli that surround the target. In the tests, a directional response is assigned to a central target stimulus. Various forms of the task are used to measure information processing and selective attention.

In neuroscience, the N100 or N1 is a large, negative-going evoked potential measured by electroencephalography ; it peaks in adults between 80 and 120 milliseconds after the onset of a stimulus, and is distributed mostly over the fronto-central region of the scalp. It is elicited by any unpredictable stimulus in the absence of task demands. It is often referred to with the following P200 evoked potential as the "N100-P200" or "N1-P2" complex. While most research focuses on auditory stimuli, the N100 also occurs for visual, olfactory, heat, pain, balance, respiration blocking, and somatosensory stimuli.

The P3a, or novelty P3, is a component of time-locked (EEG) signals known as event-related potentials (ERP). The P3a is a positive-going scalp-recorded brain potential that has a maximum amplitude over frontal/central electrode sites with a peak latency falling in the range of 250–280 ms. The P3a has been associated with brain activity related to the engagement of attention and the processing of novelty.

Somatosensory evoked potential is the electrical activity of the brain that results from the stimulation of touch. SEP tests measure that activity and are a useful, noninvasive means of assessing somatosensory system functioning. By combining SEP recordings at different levels of the somatosensory pathways, it is possible to assess the transmission of the afferent volley from the periphery up to the cortex. SEP components include a series of positive and negative deflections that can be elicited by virtually any sensory stimuli. For example, SEPs can be obtained in response to a brief mechanical impact on the fingertip or to air puffs. However, SEPs are most commonly elicited by bipolar transcutaneous electrical stimulation applied on the skin over the trajectory of peripheral nerves of the upper limb or lower limb, and then recorded from the scalp. In general, somatosensory stimuli evoke early cortical components, generated in the contralateral primary somatosensory cortex (S1), related to the processing of the physical stimulus attributes. About 100 ms after stimulus application, additional cortical regions are activated, such as the secondary somatosensory cortex (S2), and the posterior parietal and frontal cortices, marked by a parietal P100 and bilateral frontal N140. SEPs are routinely used in neurology today to confirm and localize sensory abnormalities, to identify silent lesions and to monitor changes during surgical procedures.

The late positive component or late positive complex (LPC) is a positive-going event-related brain potential (ERP) component that has been important in studies of explicit recognition memory. It is generally found to be largest over parietal scalp sites, beginning around 400–500 ms after the onset of a stimulus and lasting for a few hundred milliseconds. It is an important part of the ERP "old/new" effect, which may also include modulations of an earlier component similar to an N400. Similar positivities have sometimes been referred to as the P3b, P300, and P600. Here, we use the term "LPC" in reference to this late positive component.

<span class="mw-page-title-main">P3b</span>

The P3b is a subcomponent of the P300, an event-related potential (ERP) component that can be observed in human scalp recordings of brain electrical activity. The P3b is a positive-going amplitude peaking at around 300 ms, though the peak will vary in latency from 250 to 500 ms or later depending upon the task and on the individual subject response. Amplitudes are typically highest on the scalp over parietal brain areas.

The N170 is a component of the event-related potential (ERP) that reflects the neural processing of faces, familiar objects or words. Furthermore, the N170 is modulated by prediction error processes.

N2pc refers to an ERP component linked to selective attention. The N2pc appears over visual cortex contralateral to the location in space to which subjects are attending; if subjects pay attention to the left side of the visual field, the N2pc appears in the right hemisphere of the brain, and vice versa. This characteristic makes it a useful tool for directly measuring the general direction of a person's attention with fine-grained temporal resolution.

The oddball paradigm is an experimental design used within psychology research. Presentations of sequences of repetitive stimuli are infrequently interrupted by a deviant stimulus. The reaction of the participant to this "oddball" stimulus is recorded.

<span class="mw-page-title-main">Brain activity and meditation</span>

Meditation and its effect on brain activity and the central nervous system became a focus of collaborative research in neuroscience, psychology and neurobiology during the latter half of the 20th century. Research on meditation sought to define and characterize various practices. The effects of meditation on the brain can be broken up into two categories: state changes and trait changes, respectively alterations in brain activities during the act of meditating and changes that are the outcome of long-term practice.

William "Bill" Gehring is a psychologist, and in 2014 is the Arthur F. Thurnau Professor of Psychology at the University of Michigan in Ann Arbor, Michigan. He researches Event Related Potentials and is one of the discoverers of the Error Related Negativity. He has made contributions to the field of cognitive neuroscience through his studies on the electrophysiological markers of obsessive-compulsive disorder.

<span class="mw-page-title-main">Mechanisms of mindfulness meditation</span>

Mindfulness has been defined in modern psychological terms as "paying attention to relevant aspects of experience in a nonjudgmental manner", and maintaining attention on present moment experience with an attitude of openness and acceptance. Meditation is a platform used to achieve mindfulness. Both practices, mindfulness and meditation, have been "directly inspired from the Buddhist tradition" and have been widely promoted by Jon Kabat-Zinn. Mindfulness meditation has been shown to have a positive impact on several psychiatric problems such as depression and therefore has formed the basis of mindfulness programs such as mindfulness-based cognitive therapy, mindfulness-based stress reduction and mindfulness-based pain management. The applications of mindfulness meditation are well established, however the mechanisms that underlie this practice are yet to be fully understood. Many tests and studies on soldiers with PTSD have shown tremendous positive results in decreasing stress levels and being able to cope with problems of the past, paving the way for more tests and studies to normalize and accept mindful based meditation and research, not only for soldiers with PTSD, but numerous mental inabilities or disabilities.

<span class="mw-page-title-main">Interoception</span> Sensory system that receives and integrates information from the body

Interoception is the collection of senses providing information to the organism about the internal state of the body. This can be both conscious and subconscious. It encompasses the brain's process of integrating signals relayed from the body into specific subregions—like the brainstem, thalamus, insula, somatosensory, and anterior cingulate cortex—allowing for a nuanced representation of the physiological state of the body. This is important for maintaining homeostatic conditions in the body and, potentially, facilitating self-awareness.

References

  1. 1 2 Nieuwenhuis S, Ridderinkhof KR, Blom J, Band GP, Kok A (September 2001). "Error-related brain potentials are differentially related to awareness of response errors: evidence from an antisaccade task". Psychophysiology. 38 (5): 752–60. doi:10.1111/1469-8986.3850752. PMID   11577898.
  2. 1 2 3 Scheffers MK, Coles MG (February 2000). "Performance monitoring in a confusing world: error-related brain activity, judgments of response accuracy, and types of errors". Journal of Experimental Psychology. Human Perception and Performance. 26 (1): 141–51. doi:10.1037/0096-1523.26.1.141. PMID   10696610.
  3. Wessel JR (2012). "Error awareness and the error-related negativity: evaluating the first decade of evidence". Frontiers in Human Neuroscience. 6: 88. doi: 10.3389/fnhum.2012.00088 . PMC   3328124 . PMID   22529791.
  4. Godlove DC, Emeric EE, Segovis CM, Young MS, Schall JD, Woodman GF (November 2011). "Event-related potentials elicited by errors during the stop-signal task. I. Macaque monkeys". The Journal of Neuroscience. 31 (44): 15640–9. doi:10.1523/JNEUROSCI.3349-11.2011. PMC   3241968 . PMID   22049407.
  5. Bechtereva NP, Gretchin VB (1968). "Physiological foundations of mental activity". International Review of Neurobiology. 11: 329–352. doi:10.1016/s0074-7742(08)60392-x. ISBN   978-0-12-366811-0. ISSN   0074-7742. PMID   4887001. Archived from the original on 2019-02-02.
  6. Bechtereva NP, Shemyakina NV, Starchenko MG, Danko SG, Medvedev SV (2005). "Error detection mechanisms of the brain: Background and prospects". International Journal of Psychophysiology. 58 (2–3): 227–234. doi:10.1016/j.ijpsycho.2005.06.005. Archived from the original on 2018-04-21.
  7. Gehring, William J.; Goss, Brian; Coles, Michael G. H.; Meyer, David E.; Donchin, Emanuel (2018-03-01). "The Error-Related Negativity". Perspectives on Psychological Science. 13 (2): 200–204. doi:10.1177/1745691617715310. ISSN   1745-6916. PMID   29592655. S2CID   4459484.
  8. 1 2 Gehring WJ, Coles M, Meyer D, Donchin E (1990). "The error-related negativity: an event-related brain potential accompanying errors". Psychophysiology. 27: 34.
  9. Gehring WJ (1993). The error-related negativity: Evidence for a neural mechanism for error-related processing (Ph.D. thesis). University of Illinois at Urbana-Champaign.
  10. 1 2 Gehring WJ, Goss B, Coles MG, Meyer DE (1993). "A neural system for error detection and compensation". Psychological Science. 4 (6): 385–390. doi:10.1111/j.1467-9280.1993.tb00586.x. S2CID   17422146.
  11. Dikman ZV, Allen JJ (January 2000). "Error monitoring during reward and avoidance learning in high- and low-socialized individuals". Psychophysiology. 37 (1): 43–54. doi:10.1111/1469-8986.3710043. PMID   10705766.
  12. Luu P, Flaisch T, Tucker DM (January 2000). "Medial frontal cortex in action monitoring". The Journal of Neuroscience. 20 (1): 464–9. doi: 10.1523/JNEUROSCI.20-01-00464.2000 . PMC   6774138 . PMID   10627622.
  13. 1 2 3 Falkenstein M, Hoormann J, Christ S, Hohnsbein J (January 2000). "ERP components on reaction errors and their functional significance: a tutorial". Biological Psychology. 51 (2–3): 87–107. CiteSeerX   10.1.1.463.5431 . doi:10.1016/S0301-0511(99)00031-9. PMID   10686361. S2CID   8569230.
  14. 1 2 3 Gentsch A, Ullsperger P, Ullsperger M (October 2009). "Dissociable medial frontal negativities from a common monitoring system for self- and externally caused failure of goal achievement". NeuroImage. 47 (4): 2023–30. doi:10.1016/j.neuroimage.2009.05.064. PMID   19486945. S2CID   1269317.
  15. Kalfaoglu, C; Stafford, T; Milne, L (2018). "Frontal theta band oscillations predict error correction and post-error slowing in typing" (PDF). Journal of Experimental Psychology: Human Perception and Performance. 44 (1): 69–88. doi:10.1037/xhp0000417. PMID   28447844. S2CID   7855008.
  16. Clayson, Peter E. (2020). "Moderators of the internal consistency of error-related negativity scores: A meta-analysis of internal consistency estimates". Psychophysiology. 57 (8): e13583. doi:10.1111/psyp.13583. ISSN   1469-8986. PMID   32324305. S2CID   216084678.
  17. Gehring WJ, Coles MG, Meyer DE, Donchin E (1995). "A brain potential manifestation of error-related processing.". In Karmos G, Molnár M, Csép V, Czigler I, Desmedt JE (eds.). Perspectives of Event-Related Potential Research. Vol. Supplement 44. New York: Oxford. pp. 261–272.
  18. Hohnsbein J, Falkensetin M, Hoormann J (1989). "Error processing in visual and auditory choice reaction tasks". Psychophysiology. 3: 32.
  19. Jodo E, Kayama Y (June 1992). "Relation of a negative ERP component to response inhibition in a Go/No-go task". Electroencephalography and Clinical Neurophysiology. 82 (6): 477–82. doi:10.1016/0013-4694(92)90054-L. PMID   1375556.
  20. Ruchsow M, Spitzer M, Grön G, Grothe J, Kiefer M (July 2005). "Error processing and impulsiveness in normals: evidence from event-related potentials". Brain Research. Cognitive Brain Research. 24 (2): 317–25. doi:10.1016/j.cogbrainres.2005.02.003. PMID   15993769.
  21. Holroyd CB, Dien J, Coles MG (February 1998). "Error-related scalp potentials elicited by hand and foot movements: evidence for an output-independent error-processing system in humans". Neuroscience Letters. 242 (2): 65–8. doi:10.1016/S0304-3940(98)00035-4. hdl: 1854/LU-8650250 . PMID   9533395. S2CID   18103169.
  22. Masaki H, Tanaka H, Takasawa N, Yamazaki K (July 2001). "Error-related brain potentials elicited by vocal errors". NeuroReport. 12 (9): 1851–5. doi:10.1097/00001756-200107030-00018. PMID   11435911. S2CID   31526106.
  23. Clayson, Peter E.; Mcdonald, Julia B.; Park, Bohyun; Holbrook, Amanda; Baldwin, Scott A.; Riesel, Anja; Larson, Michael J. (2023-12-28). "Registered replication report of the construct validity of the error-related negativity ( ERN ): A multi-site study of task-specific ERN correlations with internalizing and externalizing symptoms". Psychophysiology. doi:10.1111/psyp.14496. ISSN   0048-5772.
  24. 1 2 Pailing PE, Segalowitz SJ (January 2004). "The error-related negativity as a state and trait measure: motivation, personality, and ERPs in response to errors" (PDF). Psychophysiology. 41 (1): 84–95. doi:10.1111/1469-8986.00124. PMID   14693003.
  25. Chang W, Davies PL, Gavin WJ (2009). "Error monitoring in college students with attention-deficit/hyperactivity disorder". Journal of Psychophysiology. 23 (3): 113–125. doi:10.1027/0269-8803.23.3.113.
  26. Johannes S, Wieringa BM, Nager W, Rada D, Dengler R, Emrich HM, Münte TF, Dietrich DE (November 2001). "Discrepant target detection and action monitoring in obsessive-compulsive disorder". Psychiatry Research. 108 (2): 101–10. doi:10.1016/S0925-4927(01)00117-2. PMID   11738544. S2CID   21537300.
  27. Ruchsow M, Grön G, Reuter K, Spitzer M, Hermle L, Kiefer M (2005). "Error-related brain activity in patients with obsessive-compulsive disorder and in healthy controls". Journal of Psychophysiology. 19 (4): 298–304. doi:10.1027/0269-8803.19.4.298.
  28. Endrass T, Schuermann B, Kaufmann C, Spielberg R, Kniesche R, Kathmann N (May 2010). "Performance monitoring and error significance in patients with obsessive-compulsive disorder". Biological Psychology. 84 (2): 257–63. doi:10.1016/j.biopsycho.2010.02.002. PMID   20152879. S2CID   2634362.
  29. Fiehler K, Ullsperger M, von Cramon DY (January 2005). "Electrophysiological correlates of error correction". Psychophysiology. 42 (1): 72–82. doi:10.1111/j.1469-8986.2005.00265.x. PMID   15720582.
  30. Buzzell GA, Troller-Renfree SV, Barker TV, Bowman LC, Chronis-Tuscano A, Henderson HA, Kagan J, Pine DS, Fox NA (December 2017). "A Neurobehavioral Mechanism Linking Behaviorally Inhibited Temperament and Later Adolescent Social Anxiety". Journal of the American Academy of Child and Adolescent Psychiatry. 56 (12): 1097–1105. doi:10.1016/j.jaac.2017.10.007. PMC   5975216 . PMID   29173744.
  31. Barker TV, Troller-Renfree SV, Bowman LC, Pine DS, Fox NA (April 2018). "Social influences of error monitoring in adolescent girls". Psychophysiology. 55 (9): e13089. doi:10.1111/psyp.13089. PMC   6113062 . PMID   29682751.
  32. Barker TV, Troller-Renfree S, Pine DS, Fox NA (December 2015). "Individual differences in social anxiety affect the salience of errors in social contexts". Cognitive, Affective, & Behavioral Neuroscience. 15 (4): 723–35. doi:10.3758/s13415-015-0360-9. PMC   4641754 . PMID   25967929.
  33. Clawson, Ann; Clayson, Peter E.; Keith, Cierra M.; Catron, Christina; Larson, Michael J. (2017-03-01). "Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis". Biological Psychology. 124: 87–99. doi:10.1016/j.biopsycho.2017.01.012. ISSN   0301-0511. PMID   28143802. S2CID   24643120.
  34. 1 2 Davies PL, Segalowitz SJ, Gavin WJ (June 2004). "Development of response-monitoring ERPs in 7- to 25-year-olds". Developmental Neuropsychology. 25 (3): 355–76. doi:10.1207/s15326942dn2503_6. PMID   15148003. S2CID   17152414.
  35. Troller-Renfree S, Nelson CA, Zeanah CH, Fox NA (October 2016). "Deficits in error monitoring are associated with externalizing but not internalizing behaviors among children with a history of institutionalization". Journal of Child Psychology and Psychiatry, and Allied Disciplines. 57 (10): 1145–53. doi:10.1111/jcpp.12604. PMC   5047056 . PMID   27569003.
  36. Ito S, Stuphorn V, Brown JW, Schall JD (October 2003). "Performance monitoring by the anterior cingulate cortex during saccade countermanding". Science. 302 (5642): 120–2. Bibcode:2003Sci...302..120I. doi:10.1126/science.1087847. PMID   14526085. S2CID   20984400.
  37. Holroyd, C. B., Nieuwenhuis, S., Mars, R. B., & Coles, M. G. H. (2004). Anterior cingulate cortex, selection for action, and error processing. In M. I. Posner (Ed.), Cognitive neuroscience of attention. (pp. 219-231). New York, NY, US: Guilford Press.
  38. Stemmer B, Segalowitz SJ, Witzke W, Schönle PW (2004). "Error detection in patients with lesions to the medial prefrontal cortex: an ERP study". Neuropsychologia. 42 (1): 118–30. doi:10.1016/s0028-3932(03)00121-0. PMID   14615082. S2CID   34604786.
  39. Dehaene S, Posner MI, Tucker DM (1994). "Localization of a neural system for error detection and compensation". Psychological Science. 5 (5): 303–305. doi:10.1111/j.1467-9280.1994.tb00630.x. S2CID   144007484.
  40. Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H (September 2005). "Neural mechanisms involved in error processing: a comparison of errors made with and without awareness". NeuroImage. 27 (3): 602–8. CiteSeerX   10.1.1.688.5110 . doi:10.1016/j.neuroimage.2005.04.035. hdl:2262/30186. PMID   16024258. S2CID   15497532.
  41. Roche RA, Garavan H, Foxe JJ, O'Mara SM (January 2005). "Individual differences discriminate event-related potentials but not performance during response inhibition". Experimental Brain Research. 160 (1): 60–70. doi:10.1007/s00221-004-1985-z. PMID   15480606. S2CID   24173453.
  42. 1 2 Burle B, Roger C, Allain S, Vidal F, Hasbroucq T (September 2008). "Error negativity does not reflect conflict: a reappraisal of conflict monitoring and anterior cingulate cortex activity". Journal of Cognitive Neuroscience. 20 (9): 1637–55. CiteSeerX   10.1.1.471.7640 . doi:10.1162/jocn.2008.20110. PMID   18345992. S2CID   13944789.
  43. Bernstein PS, Scheffers MK, Coles MG (December 1995). ""Where did I go wrong?" A psychophysiological analysis of error detection". Journal of Experimental Psychology. Human Perception and Performance. 21 (6): 1312–22. doi:10.1037/0096-1523.21.6.1312. PMID   7490583.
  44. Coles MG, Scheffers MK, Holroyd CB (June 2001). "Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing". Biological Psychology. 56 (3): 173–89. doi:10.1016/s0301-0511(01)00076-x. PMID   11399349. S2CID   247129.
  45. Larson, Michael J.; Clayson, Peter E.; Clawson, Ann (2014-09-01). "Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs". International Journal of Psychophysiology. 93 (3): 283–297. doi:10.1016/j.ijpsycho.2014.06.007. ISSN   0167-8760. PMID   24950132.
  46. Botvinick MM, Cohen JD, Carter CS (December 2004). "Conflict monitoring and anterior cingulate cortex: an update". Trends in Cognitive Sciences. 8 (12): 539–46. CiteSeerX   10.1.1.335.6481 . doi:10.1016/j.tics.2004.10.003. PMID   15556023. S2CID   6185169.
  47. Hajcak G, Moser JS, Yeung N, Simons RF (March 2005). "On the ERN and the significance of errors". Psychophysiology. 42 (2): 151–60. CiteSeerX   10.1.1.718.1750 . doi:10.1111/j.1469-8986.2005.00270.x. PMID   15787852.
  48. 1 2 Inzlicht M, Al-Khindi T (November 2012). "ERN and the placebo: a misattribution approach to studying the arousal properties of the error-related negativity". Journal of Experimental Psychology. General. 141 (4): 799–807. doi:10.1037/a0027586. PMID   22390264.
  49. Hajcak G, McDonald N, Simons RF (November 2003). "To err is autonomic: error-related brain potentials, ANS activity, and post-error compensatory behavior". Psychophysiology. 40 (6): 895–903. CiteSeerX   10.1.1.533.4268 . doi:10.1111/1469-8986.00107. PMID   14986842.
  50. Hajcak G, Foti D (February 2008). "Errors are aversive: defensive motivation and the error-related negativity". Psychological Science. 19 (2): 103–8. doi:10.1111/j.1467-9280.2008.02053.x. PMID   18271855. S2CID   16118604.
  51. Bartholow BD, Henry EA, Lust SA, Saults JS, Wood PK (February 2012). "Alcohol effects on performance monitoring and adjustment: affect modulation and impairment of evaluative cognitive control". Journal of Abnormal Psychology. 121 (1): 173–86. doi:10.1037/a0023664. PMC   4254813 . PMID   21604824.
  52. 1 2 Clayson, Peter E.; Kappenman, Emily S.; Gehring, William J.; Miller, Gregory A.; Larson, Michael J. (2021-07-01). "A commentary on establishing norms for error-related brain activity during the arrow flanker task among young adults". NeuroImage. 234: 117932. doi: 10.1016/j.neuroimage.2021.117932 . ISSN   1053-8119. PMID   33677074.
  53. Miltner WH, Braun CH, Coles MG (November 1997). "Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a "generic" neural system for error detection". Journal of Cognitive Neuroscience. 9 (6): 788–98. doi:10.1162/jocn.1997.9.6.788. PMID   23964600. S2CID   25731024.
  54. Holroyd CB, Coles MG (October 2002). "The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity". Psychological Review. 109 (4): 679–709. CiteSeerX   10.1.1.334.5138 . doi:10.1037/0033-295x.109.4.679. PMID   12374324.
  55. 1 2 Olvet DM, Hajcak G (December 2008). "The error-related negativity (ERN) and psychopathology: toward an endophenotype". Clinical Psychology Review. 28 (8): 1343–54. doi:10.1016/j.cpr.2008.07.003. PMC   2615243 . PMID   18694617.
  56. Eaton WW, Shao H, Nestadt G, Lee HB, Lee BH, Bienvenu OJ, Zandi P (May 2008). "Population-based study of first onset and chronicity in major depressive disorder". Archives of General Psychiatry. 65 (5): 513–20. doi:10.1001/archpsyc.65.5.513. PMC   2761826 . PMID   18458203.
  57. Moran, Tim P.; Schroder, Hans S.; Kneip, Chelsea; Moser, Jason S. (2017-01-01). "Meta-analysis and psychophysiology: A tutorial using depression and action-monitoring event-related potentials". International Journal of Psychophysiology. Rigor and Replication: Towards Improved Best Practices in Psychophysiological Research. 111: 17–32. doi:10.1016/j.ijpsycho.2016.07.001. ISSN   0167-8760. PMID   27378538.
  58. Clayson, Peter E.; Carbine, Kaylie A.; Larson, Michael J. (2020-04-01). "A registered report of error-related negativity and reward positivity as biomarkers of depression: P-Curving the evidence". International Journal of Psychophysiology. 150: 50–72. doi:10.1016/j.ijpsycho.2020.01.005. ISSN   0167-8760. PMID   31987869. S2CID   210933345.
  59. Franken IH, van Strien JW, Kuijpers I (January 2010). "Evidence for a deficit in the salience attribution to errors in smokers". Drug and Alcohol Dependence. 106 (2–3): 181–5. doi:10.1016/j.drugalcdep.2009.08.014. PMID   19781864.
  60. Fein G, Chang M (January 2008). "Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment-naïve alcoholics". Drug and Alcohol Dependence. 92 (1–3): 141–8. doi:10.1016/j.drugalcdep.2007.07.017. PMC   2430520 . PMID   17869027.
  61. Albrecht B, Braindeis D, Uebel H, Heinrich H, Mueller U, Hasselhorn M, Steinhausen HC, Rothenberger A, Banaschewski T (2008). "Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype". Biological Psychiatry. 64 (7): 615–625. doi:10.1016/j.biopsych.2007.12.016. PMC   2580803 . PMID   18339358.
  62. Deecke L, Scheid P, Kornhuber H (1969). "Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements". Experimental Brain Research. 7 (2): 158–168. doi:10.1007/BF00235441. PMID   5799432. S2CID   25140343.
  63. Bortoletto M, Sarlo M, Poli S, Stegagno L (2006). "Pre-motion positivity during self-paced movements of finger and mouth". NeuroReport. 17 (9): 883–886. doi:10.1097/01.wnr.0000221830.95598.ea. PMID   16738481. S2CID   37340197.
  64. Burwell S, Makeig S, Iacono W, Malone S (2019). "Reduced premovement positivity during the stimulus-response interval precedes errors: using single-trial and regression ERPs to understand performance deficits in ADHD". Psychophysiology. 56 (9): e13392. doi:10.1111/psyp.13392. PMC   6699894 . PMID   31081153.
  65. Dehaene, Stanislas (2014). Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts. Viking. ISBN   978-0670025435.
  66. Vocat R, Pourtois G, Vuilleumier P (August 2008). "Unavoidable errors: a spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task". Neuropsychologia. 46 (10): 2545–55. doi:10.1016/j.neuropsychologia.2008.04.006. PMID   18533202. S2CID   12322358.
  67. Herrmann MJ, Saathoff C, Schreppel TJ, Ehlis AC, Scheuerpflug P, Pauli P, Fallgatter AJ (September 2009). "The effect of ADHD symptoms on performance monitoring in a non-clinical population". Psychiatry Research. 169 (2): 144–8. doi:10.1016/j.psychres.2008.06.015. PMID   19700203. S2CID   207446529.
  68. Santesso DL, Segalowitz SJ, Schmidt LA (2006). "Error-related electrocortical responses are enhanced in children with obsessive-compulsive behaviors". Developmental Neuropsychology. 29 (3): 431–45. doi:10.1207/s15326942dn2903_3. PMID   16671860. S2CID   26971925.
  69. Wild-Wall N, Oades RD, Schmidt-Wessels M, Christiansen H, Falkenstein M (October 2009). "Neural activity associated with executive functions in adolescents with attention-deficit/hyperactivity disorder (ADHD)" (PDF). International Journal of Psychophysiology. 74 (1): 19–27. doi:10.1016/j.ijpsycho.2009.06.003. PMID   19607863.
  70. Endrass T, Klawohn J, Schuster F, Kathmann N (2008). "Overactive performance monitoring in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions". Neuropsychologia. 46 (7): 1877–87. doi:10.1016/j.neuropsychologia.2007.12.001. PMID   18514679. S2CID   10992143.
  71. Larson MJ, Perlstein WM (October 2009). "Awareness of deficits and error processing after traumatic brain injury". NeuroReport. 20 (16): 1486–90. doi:10.1097/wnr.0b013e32833283fe. PMID   19809369. S2CID   31173397.
  72. Proudfit, Greg Hajcak (April 2015). "The reward positivity: From basic research on reward to a biomarker for depression: The reward positivity". Psychophysiology. 52 (4): 449–459. doi:10.1111/psyp.12370. PMID   25327938.