Late positive component

Last updated

The late positive component or late positive complex (LPC) is a positive-going event-related brain potential (ERP) component that has been important in studies of explicit recognition memory. [1] [2] It is generally found to be largest over parietal scalp sites (relative to reference electrodes placed on the mastoid processes), beginning around 400–500 ms after the onset of a stimulus and lasting for a few hundred milliseconds. It is an important part of the ERP "old/new" effect, which may also include modulations of an earlier component similar to an N400. Similar positivities have sometimes been referred to as the P3b, P300, and P600. [3] Here, we use the term "LPC" in reference to this late positive component.

Contents

History

In psychological literature on memory, long-term memory (LTM) is commonly divided into two types: semantic and episodic. Semantic memories are memories that are stored in LTM without specific encoding information linked to them, and thus represent general knowledge about the world that a person has acquired across the lifespan. Episodic memories are memories that are stored in long-term memory as specific "episodes" and that, therefore, have some sort of specific context information associated with them, such as where or when they were encoded. At retrieval, episodic memories are often divided into two different categories based on how much information is available about the "episode." These two categories are recollection and familiarity. Recollection is when certain information about the context of the memory at encoding, for instance when or where a memory was encoded, is recalled. Familiarity is a general sense that a person has seen something before without any other details about the event. Even though they are divided into two categories, it is currently debated whether they are separate entities controlled by different brain functions or just a graded continuum of the same function.

The component that came to be called the LPC has been associated with episodic memory and was first described in ERP studies examining either repetition or recognition effects. In both paradigms, studies found that ERPs to repeated/recognized items differed from those to newly presented ones in several ways. In particular, second presentations of items were associated with increased positivity between 500 and 800 ms post-stimulus onset—an effect that came to be called the LPC. [4] [5] but also referred to as the P300, [6] late positivity [7] or "parietal old/new effect". [8] In one of the earliest examples of such a study, Friedman (1990) presented test items in a continuous recognition paradigm (in which study and test trials are intermingled). [9] Results showed that ERPs to old items were characterized by decreases in an negativity between 300 and 500 ms (N400) and increases in a subsequent, partially overlapping positivity (LPC/P300). The joint increase in positivity across these two responses was termed the "old/new" effect. [1] [10] [11]

Main paradigms

The main paradigm that is used to elicit and study the LPC involves a two part, study-test design. In the "study" phase, the participant is given a list of words or other items to be remembered, presented one at a time. The participant may be told to try to remember these items for later ("intentional" encoding), or may be asked to make judgments about the item without realizing that there will later be a memory test for the items ("incidental" encoding). Then, after some amount of time, the studied ("old") items are re-presented to the subjects, mixed with never before presented foils ("new" items), and subjects are asked to classify the items as old or new. During this test or retrieval phase, ERPs are recorded and the brain responses to both new and old words are analyzed. The results typically show a larger LPC for old than for new words. [10] [11] Note that if ERPs are also recorded during the study phase of the experiment, then responses during the test phase can be used to look at factors that predict later memory; this effect is known as the difference due to memory, or Dm.

As described above, a variant of the study-test paradigm is a continuous recognition paradigm, in which subjects are asked to classify every item as new or old and "study" items (first presentations) and "test" items (second presentations) are intermingled.

Variants of the paradigm manipulate what subjects are doing at encoding (for example, through a levels of processing manipulation, how long or how many times items are studied, what the delay between study and test is, and what kind of judgments subjects make at retrieval (for example, in addition to determining if an item is old or new, subjects might be asked to recall specific details of its learning context or to indicate their confidence in their memory judgments).

Component characteristics

As reviewed by Friedman and Johnson, [1] the LPC is typically seen in the form of a broad positivity between 400 and 800 ms post-stimulus onset. It is largest over medial, posterior scalp sites, and tends to be bigger over left hemisphere recording sites. It is larger for items that have been seen before, especially those correctly classified as "old", as compared with those correctly classified as "new". LPCs have been recorded to words, line drawings, sounds, and meaningless shapes, and it is seen in both long and short-term memory paradigms. [12] It is believed to index recollective processes.

Functional sensitivity

The LPC has been more associated with explicit memory than implicit memory. Although LPCs can be seen in repetition paradigms wherein items are repeated but subjects do not respond to those repetitions and are not asked to take note of them, LPC responses are bigger in tasks in which subjects make memory-related judgments. Rugg and colleagues (1998a) [13] conducted a direct comparison of implicit and explicit retrieval ERPs. Specifically, in the explicit condition, participants performed an old/new recognition judgment on a list of words, half new and half repeated. In the implicit condition participants made living/nonliving judgment on the same material, so that repetition was task-irrelevant. Results revealed that repetition modulated LPC in the explicit task but not implicit task. Supporting evidence comes from studies of the effects of brain damage on the LPC, which have shown that the LPC effect is attenuated or eliminated in patients with bilateral hippocampal damage or damage to the medial temporal lobe (similar damage does not disrupt the N400 part of the old/new effect, suggesting it is more related to implicit memory). [12]

There are many things that are known to change the amplitude of the LPC. The amplitude increases with all of the following: study-test repetitions, [13] words that are reported as being consciously remembered (versus being familiar), [5] [14] correctly recognized words that are then later recalled, [13] and words for which the context at encoding is recalled with the word. [15] [16] [17] Furthermore, LPC amplitude is also sensitive to levels of processing manipulation, being larger for more deeply encoded items. [4] [13] Thus, these data suggest that the LPC amplitude is closely allied with recollection and reflects successful retrieval.

The LPC is also sensitive to decision accuracy. It is larger in response to correctly identified old words than it is to incorrectly identified old words. For example, Finnigan and colleagues (2002) [3] extended the traditional old/new effect paradigm by presenting new unstudied words and old words which had been presented at study either once ("weak") or three times ("strong"). The probability of an "old" response was significantly higher for strong than weak words and significantly higher for weak than new words. Comparisons were made initially between ERPs to new, weak and strong words, and subsequently between ERPs associated with six strength-by-response conditions. Results showed the amplitude of LPC effect was sensitive to decision accuracy (and perhaps confidence). Its amplitude was larger in ERPs evoked by words attracting correct versus incorrect recognition decisions. The LPC effect had a left > right, centro-parietal scalp distribution (in ear-referenced ERPs). Therefore, in addition to the majority of studies in which interpreted LPC from the perspective of dual-process models (which dissociate familiarity and recollection), Finningan et al. (2002) [3] provided alternative interpretations of LPC in terms of memory strength and decisional factors.

According to a study done by Mecklinger (1998), the scalp distribution of the LPC can vary with the type of material retrieved. When information was retrieved about an object, the distribution was right and centro-frontally centered. When the information retrieved was about spatial location, the distribution was bilaterally symmetric over the occipital lobe of the brain.

Theory and sources

As reviewed by Rugg and Curran, [18] the precise functional significance of the LPC continues to be debated. One early suggestion was that the effect reflects processes that contribute to the representation of recollected information. [17] Alternatively, the effect might index attentional orienting to recollected information, [19] [20] rather than processes supporting its representation or maintenance. It has recently been argued [21] that findings indicating that the effect varies according to the amount of information recollected [21] [22] are more consistent with the first of these two proposals. [18]

The difference in the response pattern of the LPC, in comparison with other components elicited in memory tasks, such as the N400, has played an important role in debates about dual-process theories of memory, which postulate qualitatively different mechanisms underlying familiarity and recollection.

In terms of the neural source of the component, the characteristic scalp distribution of the LPC suggests that it might reflect neural activity generated in the lateral parietal cortex. [18] Consistent with this hypothesis, fMRI studies report recollection-sensitive activity in this region. [20] [23] Furthermore, findings of direct functional parallels between these fMRI and ERP old/new effects [21] [24] [25] [26] give additional credence to the hypothesis that the ERP effect reflects activity in a recollection-sensitive region of the lateral parietal cortex. Results from studies of patients with brain damage, described above, indicate that medial temporal lobe areas and the hippocampus contribute to the processes indexed by the LPC, although perhaps not directly to the recorded scalp activity.

See also

Related Research Articles

Long-term memory (LTM) is the stage of the Atkinson–Shiffrin memory model in which informative knowledge is held indefinitely. It is defined in contrast to short-term and working memory, which persist for only about 18 to 30 seconds. LTM is commonly labelled as "explicit memory" (declarative), as well as "episodic memory," "semantic memory," "autobiographical memory," and "implicit memory".

Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.

Source amnesia is the inability to remember where, when or how previously learned information has been acquired, while retaining the factual knowledge. This branch of amnesia is associated with the malfunctioning of one's explicit memory. It is likely that the disconnect between having the knowledge and remembering the context in which the knowledge was acquired is due to a dissociation between semantic and episodic memory – an individual retains the semantic knowledge, but lacks the episodic knowledge to indicate the context in which the knowledge was gained.

The interference theory is a theory regarding human memory. Interference occurs in learning. The notion is that memories encoded in long-term memory (LTM) are forgotten and cannot be retrieved into short-term memory (STM) because either memory could interfere with the other. There is an immense number of encoded memories within the storage of LTM. The challenge for memory retrieval is recalling the specific memory and working in the temporary workspace provided in STM. Retaining information regarding the relevant time of encoding memories into LTM influences interference strength. There are two types of interference effects: proactive and retroactive interference.

Semantic memory refers to general world knowledge that humans have accumulated throughout their lives. This general knowledge is intertwined in experience and dependent on culture. New concepts are learned by applying knowledge learned from things in the past.

Episodic memory is the memory of everyday events that can be explicitly stated or conjured. It is the collection of past personal experiences that occurred at particular times and places; for example, the party on one's 7th birthday. Along with semantic memory, it comprises the category of explicit memory, one of the two major divisions of long-term memory.

<span class="mw-page-title-main">Picture superiority effect</span> Psychological phenomenon

The picture superiority effect refers to the phenomenon in which pictures and images are more likely to be remembered than are words. This effect has been demonstrated in numerous experiments using different methods. It is based on the notion that "human memory is extremely sensitive to the symbolic modality of presentation of event information". Explanations for the picture superiority effect are not concrete and are still being debated.

<span class="mw-page-title-main">Visual memory</span> Ability to process visual and spatial information

Visual memory describes the relationship between perceptual processing and the encoding, storage and retrieval of the resulting neural representations. Visual memory occurs over a broad time range spanning from eye movements to years in order to visually navigate to a previously visited location. Visual memory is a form of memory which preserves some characteristics of our senses pertaining to visual experience. We are able to place in memory visual information which resembles objects, places, animals or people in a mental image. The experience of visual memory is also referred to as the mind's eye through which we can retrieve from our memory a mental image of original objects, places, animals or people. Visual memory is one of several cognitive systems, which are all interconnected parts that combine to form the human memory. Types of palinopsia, the persistence or recurrence of a visual image after the stimulus has been removed, is a dysfunction of visual memory.

Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. Working memory stores information for immediate use or manipulation, which is aided through hooking onto previously archived items already present in the long-term memory of an individual.

In mental memory, storage is one of three fundamental stages along with encoding and retrieval. Memory is the process of storing and recalling information that was previously acquired. Storing refers to the process of placing newly acquired information into memory, which is modified in the brain for easier storage. Encoding this information makes the process of retrieval easier for the brain where it can be recalled and brought into conscious thinking. Modern memory psychology differentiates between the two distinct types of memory storage: short-term memory and long-term memory. Several models of memory have been proposed over the past century, some of them suggesting different relationships between short- and long-term memory to account for different ways of storing memory.

<span class="mw-page-title-main">Posterior parietal cortex</span>

The posterior parietal cortex plays an important role in planned movements, spatial reasoning, and attention.

There is evidence suggesting that different processes are involved in remembering something versus knowing whether it is familiar. It appears that "remembering" and "knowing" represent relatively different characteristics of memory as well as reflect different ways of using memory.

The neuroanatomy of memory encompasses a wide variety of anatomical structures in the brain.

Recognition memory, a subcategory of declarative memory, is the ability to recognize previously encountered events, objects, or people. When the previously experienced event is reexperienced, this environmental content is matched to stored memory representations, eliciting matching signals. As first established by psychology experiments in the 1970s, recognition memory for pictures is quite remarkable: humans can remember thousands of images at high accuracy after seeing each only once and only for a few seconds.

Difference due to memory (Dm) indexes differences in neural activity during the study phase of an experiment for items that subsequently are remembered compared to items that are later forgotten. It is mainly discussed as an event-related potential (ERP) effect that appears in studies employing a subsequent memory paradigm, in which ERPs are recorded when a participant is studying a list of materials and trials are sorted as a function of whether they go on to be remembered or not in the test phase. For meaningful study material, such as words or line drawings, items that are subsequently remembered typically elicit a more positive waveform during the study phase. This difference typically occurs in the range of 400–800 milliseconds (ms) and is generally greatest over centro-parietal recording sites, although these characteristics are modulated by many factors.

The oddball paradigm is an experimental design used within psychology research. Presentations of sequences of repetitive stimuli are infrequently interrupted by a deviant stimulus. The reaction of the participant to this "oddball" stimulus is recorded.

Autonoetic consciousness is the human ability to mentally place oneself in the past and future or in counterfactual situations, and to thus be able to examine one's own thoughts.

<span class="mw-page-title-main">Memory</span> Faculty of mind to store and retrieve data

Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia.

<span class="mw-page-title-main">Childhood memory</span> Early life experiences often memorable for life

Childhood memory refers to memories formed during childhood. Among its other roles, memory functions to guide present behaviour and to predict future outcomes. Memory in childhood is qualitatively and quantitatively different from the memories formed and retrieved in late adolescence and the adult years. Childhood memory research is relatively recent in relation to the study of other types of cognitive processes underpinning behaviour. Understanding the mechanisms by which memories in childhood are encoded and later retrieved has important implications in many areas. Research into childhood memory includes topics such as childhood memory formation and retrieval mechanisms in relation to those in adults, controversies surrounding infantile amnesia and the fact that adults have relatively poor memories of early childhood, the ways in which school environment and family environment influence memory, and the ways in which memory can be improved in childhood to improve overall cognition, performance in school, and well-being, both in childhood and in adulthood.

The Deese–Roediger–McDermott (DRM) paradigm is a procedure in cognitive psychology used to study false memory in humans. The procedure was pioneered by James Deese in 1959, but it was not until Henry L. Roediger III and Kathleen McDermott extended the line of research in 1995 that the paradigm became popular. The procedure typically involves the oral presentation of a list of related words and then requires the subject to remember as many words from the list as possible. Typical results show that subjects recall a related but absent word, known as a 'lure', with the same frequency as other presented words. When asked about their experience after the test, about half of all participants report that they are sure that they remember hearing the lure, indicating a false memory – a memory for an event that never occurred.

References

  1. 1 2 3 Friedman, D.; Johnson, R. E. (2000). "Event-related potential (ERP) studies of memory encoding and retrieval: A selective review". Microscopy Research and Technique. 51 (1): 6–28. CiteSeerX   10.1.1.473.8095 . doi:10.1002/1097-0029(20001001)51:1<6::aid-jemt2>3.3.co;2-i. PMID   11002349.
  2. Munte, T. F., Urbach, T. P., Duzel, E., & Kutas, M., (2000). Event-related brain potentials in the study of human cognition and neuropsychology, In: F. Boller, J. Grafman, and G. Rizzolatti (Eds.) Handbook of Neuropsychology, Vol. 1, 2nd edition, Elsevier Science Publishers B.V., 97.
  3. 1 2 3 Finnigan, S., Humphreys, M.S., Dennis, S., Geffen, G. (2002). ERP 'old/new' effects: memory strength and decisional factor(s). Neuropsychiologia (40), 2288–2304.
  4. 1 2 Paller, K. A.; Kutas, M.; McIsaac, H. K. (1995). "Monitoring conscious recollection via the electrical activity of the brain". Psychological Science. 6 (2): 107–111. doi:10.1111/j.1467-9280.1995.tb00315.x. S2CID   8607942.
  5. 1 2 Smith, M. E.; Guster, K. (1993). "Decomposition of recognition memory event-related potentials yields target, repetition, and retrieval effects". Electroencephalography and Clinical Neurophysiology. 86 (5): 335–343. doi:10.1016/0013-4694(93)90046-x. PMID   7685267.
  6. Donchin, E., & Fabiani, M. (1991). The use of event-related brain potentials in the study of memory: Is P300 a measure of event distinctiveness? In J. R. Jennings & M. G. H. Coles (Eds.), Handbook of cognitive psychophysiology: Central and autonomic nervous system approaches (pp. 471-510). Chichester, UK: John Wiley.
  7. Donaldson, D. I.; Rugg, M. D. (1999). "Event-related potential studies of associative recognition and recall: electrophysiological evidence for context dependent retrieval processes". Cognitive Brain Research. 8 (1): 1–16. doi:10.1016/s0926-6410(98)00051-2. PMID   10216269.
  8. Rugg, M. D.; Schloerscheidt, A. M.; Doyle, M. C.; Cox, C. J.; Patching, G. R. (1996). "Event-related potentials and the recollection of associative information". Cognitive Brain Research. 4 (4): 297–304. doi:10.1016/s0926-6410(96)00067-5. PMID   8957571.
  9. Friedman, D. (1990). "ERPs during continuous recognition memory for words". Biological Psychology. 30 (1): 61–87. doi: 10.1016/0301-0511(90)90091-A . PMID   2223937.
  10. 1 2 Johnson, R. Jr. (1995a). Event-related potential insights into the neurobiology of memory systems. In: Boller, F., Grafman J. (Eds). The handbook of neuropsychology, 10. Amsterdam: Elsevier Science Publishers, 134-164.
  11. 1 2 Rugg, M. D. (1995). "Memory and consciousness: a selective review of issues and data". Neuropsychologia. 33 (9): 1131–1141. doi:10.1016/0028-3932(95)00053-6. PMID   7501134. S2CID   41495775.
  12. 1 2 Olichney, J.; Van Petten, C.; Paller, K.; Salmon, D.; Iragui, V.; Kutas, M. (2000). "Word repetition in amnesia. Electrophysiological measures of impaired and spared memory". Brain. 123 (9): 1948–1963. doi: 10.1093/brain/123.9.1948 . PMID   10960058.
  13. 1 2 3 4 Rugg, M. D.; Mark, R. E.; Walla, P.; Schloerscheidt, A. M.; Birch, C. S.; Allan, K. (1998a). "Dissociation of the neural correlates of implicit and explicit memory". Nature. 392 (6676): 595–598. doi:10.1038/33396. PMID   9560154. S2CID   2390465.
  14. Smith, M. E. (1993). "Neurophysiological manifestations of recollective experience during recognition memory judgments". Journal of Cognitive Neuroscience. 5 (1): 1–13. doi:10.1162/jocn.1993.5.1.1. PMID   23972116. S2CID   23094205.
  15. Trott, C. T.; Friedman, D.; Ritter, W.; Fabiani, M.; Snodgrass, J. G. (1999). "Episodic priming and memory for temporal source: event related potentials reveal age-related differences in prefrontal functioning". Psychology and Aging. 14 (3): 390–413. doi:10.1037/0882-7974.14.3.390. PMID   10509695.
  16. Wilding, E. L; Doyle, M. C.; Rugg, M. D.; Polkey, Charles E.; Robbins, Trevor W. (1995). "Recognition memory with and without retrieval of context: An event-related potential study". Neuropsychologia. 33 (1): 1–25. doi:10.1016/0028-3932(94)00098-A. PMID   7731533. S2CID   37994751.
  17. 1 2 Wilding, E. L.; Rugg, M. D. (1996). "An event-related potential study of recognition memory with and without retrieval of source". Brain. 119 (3): 889–905. doi: 10.1093/brain/119.3.889 . PMID   8673500.
  18. 1 2 3 Rugg, M. D.; Curran, T. (2007). "Event-related potentials and recognition memory". Trends in Cognitive Sciences. 11 (6): 251–257. doi:10.1016/j.tics.2007.04.004. PMID   17481940. S2CID   1249891.
  19. Rugg, M. D.; Otten, L. J.; Henson, R. N. (2002). "The neural basis of episodic memory: evidence from functional neuroimaging". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 357 (1424): 1097–1110. doi:10.1098/rstb.2002.1102. PMC   1693015 . PMID   12217177.
  20. 1 2 Wagner, AD; Shannon, BJ; Kahn, I; Buckner, RL (2005). "Parietal lobe contributions to episodic memory retrieval". Trends in Cognitive Sciences. 9 (9): 445–453. doi:10.1016/j.tics.2005.07.001. PMID   16054861. S2CID   8394695.
  21. 1 2 3 Vilberg, K. L.; Moosavi, R. F.; Rugg, M. D. (2006). "The relationship between electrophysiological correlates of recollection and amount of information retrieved". Brain Research. 1122 (1): 161–170. doi:10.1016/j.brainres.2006.09.023. PMC   1713226 . PMID   17027673.
  22. Wilding, E.L. (2000). "In what way does the ERP parietal old/new effect index recollection". International Journal of Psychophysiology. 35 (1): 81–87. doi:10.1016/S0167-8760(99)00095-1. PMID   10683669.
  23. Ecker, U. K. H.; Zimmer, H. D.; Groh-Bordin, C.; Mecklinger, A. (2007). "Context effects on familiarity are familiarity effects of context — an electrophysiological study. International Journal of". Psychophysiology. 64 (2): 146–156. doi:10.1016/j.ijpsycho.2007.01.005. PMID   17331603.
  24. Yonelinas, A.P.; Otten, L.J.; Shaw, K.N.; Rugg, M.D. (2005). "Separating the brain regions involved in recollection and familiarity in recognition memory" (PDF). Journal of Neuroscience. 25 (11): 3002–3008. doi:10.1523/JNEUROSCI.5295-04.2005. PMC   6725129 . PMID   15772360.
  25. Woodruff, C. C.; Hayama, H. R.; Rugg, M. D. (2006). "Electrophysiological dissociation of the neural correlates of recollection and familiarity". Brain Research. 1100 (1): 125–135. doi:10.1016/j.brainres.2006.05.019. PMID   16774746. S2CID   2600632.
  26. Herron, J. E.; Henson, R. N.; Rugg, M. D. (2004). "Probability effects on the neural correlates of retrieval success: an fMRI study". NeuroImage. 21 (1): 302–310. doi:10.1016/j.neuroimage.2003.09.039. PMID   14741668. S2CID   13485553.