Nidogen

Last updated

Nidogens, formerly known as entactins, are a family of sulfated monomeric glycoproteins located in the basal lamina [1] of parahoxozoans. [2] Two nidogens have been identified in humans: nidogen-1 (NID1) and nidogen-2 (NID2). [3] Remarkably, vertebrates are still capable of stabilizing basement membrane in the absence of either identified nidogen. [4] In contrast, those lacking both nidogen-1 and nidogen-2 typically die prematurely during embryonic development as a result of defects existing in the heart and lungs. [5] Nidogen have been shown to play a crucial role during organogenesis in late embryonic development, particularly in cardiac and lung development. [6] Insufficient levels of nidogen in mice causes poorly developed organs such as the lungs and heart, which ultimately ensues to an early death. [7] Due to nidogen being necessary in the formation of basement membranes, serving as a linker protein, and those basement proteins being shown to be necessary during tissue growth, nidogen is crucial for embryonic development. [8] From an evolutionary perspective, nidogens are highly conserved across vertebrates and invertebrates, retaining their ability to bind laminin. [9]

In nematodes, nidogen-1 is necessary for axon guidance, but not for basement membrane assembly. [10]

Related Research Articles

<span class="mw-page-title-main">Extracellular matrix</span> Network of proteins and molecules outside cells that provides structural support for cells

In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and biochemical support to surrounding cells. Because multicellularity evolved independently in different multicellular lineages, the composition of ECM varies between multicellular structures; however, cell adhesion, cell-to-cell communication and differentiation are common functions of the ECM.

<span class="mw-page-title-main">Basement membrane</span> Thin fibrous layer between the cells and the adjacent connective tissue in animals

The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tissues including mesothelium and endothelium, and the underlying connective tissue.

Cell adhesion molecules (CAMs) are a subset of cell surface proteins that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. In essence, CAMs help cells stick to each other and to their surroundings. CAMs are crucial components in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in generating force and movement and consequently ensuring that organs are able to execute their functions normally. In addition to serving as "molecular glue", CAMs play important roles in the cellular mechanisms of growth, contact inhibition, and apoptosis. Aberrant expression of CAMs may result in a wide range of pathologies, ranging from frostbite to cancer.

<span class="mw-page-title-main">Nidogen-1</span> Protein-coding gene in the species Homo sapiens

Nidogen-1 (NID-1), formerly known as entactin, is a protein that in humans is encoded by the NID1 gene. Both nidogen-1 and nidogen-2 are essential components of the basement membrane alongside other components such as type IV collagen, proteoglycans, laminin and fibronectin.

<span class="mw-page-title-main">Netrin</span> Class of proteins involved in axon guidance

Netrins are a class of proteins involved in axon guidance. They are named after the Sanskrit word "netr", which means "one who guides". Netrins are genetically conserved across nematode worms, fruit flies, frogs, mice, and humans. Structurally, netrin resembles the extracellular matrix protein laminin.

<span class="mw-page-title-main">Laminin</span> Protein in the extracellular matrix

Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major constituents of the basement membrane, namely the basal lamina. Laminins are vital to biological activity, influencing cell differentiation, migration, and adhesion.

<span class="mw-page-title-main">FBLN1</span> Protein-coding gene in the species Homo sapiens

FBLN1 is the gene encoding fibulin-1, an extracellular matrix and plasma protein.

<span class="mw-page-title-main">Laminin, alpha 5</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-5 is a protein that in humans is encoded by the LAMA5 gene.

<span class="mw-page-title-main">Ribosomal protein SA</span> Protein-coding gene in the species Homo sapiens

40S ribosomal protein SA is a ribosomal protein that in humans is encoded by the RPSA gene. It also acts as a cell surface receptor, in particular for laminin, and is involved in several pathogenic processes.

<span class="mw-page-title-main">Laminin subunit alpha-1</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-1 is a protein that in humans is encoded by the LAMA1 gene.

<span class="mw-page-title-main">Laminin subunit gamma-1</span> Protein-coding gene in the species Homo sapiens

Laminin subunit gamma-1 is a protein that in humans is encoded by the LAMC1 gene.

<span class="mw-page-title-main">Laminin, beta 1</span> Protein-coding gene in the species Homo sapiens

Laminin subunit beta-1 is a protein that in humans is encoded by the LAMB1 gene.

<span class="mw-page-title-main">Laminin subunit alpha-2</span> Protein-coding gene in the species Homo sapiens

Laminin subunit alpha-2 is a protein that in humans is encoded by the LAMA2 gene.

<span class="mw-page-title-main">FBLN2</span> Protein-coding gene in the species Homo sapiens

Fibulin-2 is a protein that in humans is encoded by the FBLN2 gene.

<span class="mw-page-title-main">Nidogen-2</span> Protein-coding gene in the species Homo sapiens

Nidogen-2, also known as osteonidogen, is a basal lamina protein of the nidogen family. It was the second nidogen to be described after nidogen-1 (entactin). Both play key roles during late embryonic development. In humans it is encoded by the NID2 gene.

<span class="mw-page-title-main">Neuroligin</span> Protein

Neuroligin (NLGN), a type I membrane protein, is a cell adhesion protein on the postsynaptic membrane that mediates the formation and maintenance of synapses between neurons. Neuroligins act as ligands for β-neurexins, which are cell adhesion proteins located presynaptically. Neuroligin and β-neurexin "shake hands", resulting in the connection between two neurons and the production of a synapse. Neuroligins also affect the properties of neural networks by specifying synaptic functions, and they mediate signalling by recruiting and stabilizing key synaptic components. Neuroligins interact with other postsynaptic proteins to localize neurotransmitter receptors and channels in the postsynaptic density as the cell matures. Additionally, neuroligins are expressed in human peripheral tissues and have been found to play a role in angiogenesis. In humans, alterations in genes encoding neuroligins are implicated in autism and other cognitive disorders. Antibodies in a mother from previous male pregnancies against neuroligin 4 from the Y chromosome increase the probability of homosexuality in male offspring.

<span class="mw-page-title-main">Laminin subunit gamma-3</span> Protein-coding gene in the species Homo sapiens

Laminin subunit gamma-3 also known as LAMC3 is a protein that in humans is encoded by the LAMC3 gene.

SNED1 is an extracellular matrix (ECM) protein expressed at low levels in a wide range of tissues. The gene encoding SNED1 is located in the human chromosome 2 at locus q37.3. The corresponding mRNA isolated from the spleen and is 6834bp in length, and the corresponding protein is 1413 amino-acid long. The mouse ortholog of SNED1 was cloned in 2004 from the embryonic kidney by Leimester et al. SNED1 present domains characteristic of ECM proteins, including an amino-terminal NIDO domain, several calcium binding EGF-like domains (EGF_CA), a Sushi domain also known as complement control protein (CCP) domain, and three type III fibronectin (FN3) domains in the carboxy-terminal region.

<span class="mw-page-title-main">Synaptic stabilization</span> Modifying synaptic strength via cell adhesion molecules

Synaptic stabilization is crucial in the developing and adult nervous systems and is considered a result of the late phase of long-term potentiation (LTP). The mechanism involves strengthening and maintaining active synapses through increased expression of cytoskeletal and extracellular matrix elements and postsynaptic scaffold proteins, while pruning less active ones. For example, cell adhesion molecules (CAMs) play a large role in synaptic maintenance and stabilization. Gerald Edelman discovered CAMs and studied their function during development, which showed CAMs are required for cell migration and the formation of the entire nervous system. In the adult nervous system, CAMs play an integral role in synaptic plasticity relating to learning and memory.

Reichert's membrane is an extraembryonic membrane that forms during early mammalian embryonic development. It forms as a thickened basement membrane to cover the embryo immediately following implantation to give protection to the embryo from the uterine pressures exerted. Reichert's membrane is also important for the maternofetal exchange of nutrients. The membrane collapses once the placenta has fully developed.

References

  1. Hortsch M, Umemori H (2009). The Sticky Synapse: Cell Adhesion Molecules and Their Role in Synapse Formation and Maintenance. New York, NY: Springer. p. 66. ISBN   9780387927084.
  2. Nielsen C (July 2019). "Early animal evolution: a morphologist's view". Royal Society Open Science. 6 (7): 190638. Bibcode:2019RSOS....690638N. doi:10.1098/rsos.190638. PMC   6689584 . PMID   31417759.
  3. Miosge N, Holzhausen S, Zelent C, Sprysch P, Herken R (2001). "Nidogen-1 and nidogen-2 are found in basement membranes during human embryonic development". The Histochemical Journal. 33 (9–10): 523–530. doi:10.1023/A:1014995523521. PMID   12005023. S2CID   818451.
  4. Lössl P, Kölbel K, Tänzler D, Nannemann D, Ihling CH, Keller MV, et al. (2014-11-11). Kobe B (ed.). "Analysis of nidogen-1/laminin γ1 interaction by cross-linking, mass spectrometry, and computational modeling reveals multiple binding modes". PLOS ONE. 9 (11): e112886. Bibcode:2014PLoSO...9k2886L. doi: 10.1371/journal.pone.0112886 . PMC   4227867 . PMID   25387007.
  5. Fox MA, Ho MS, Smyth N, Sanes JR (September 2008). "A synaptic nidogen: developmental regulation and role of nidogen-2 at the neuromuscular junction". Neural Development. 3 (1): 24. doi: 10.1186/1749-8104-3-24 . PMC   2567315 . PMID   18817539.
  6. Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, et al. (August 2005). "Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice". Molecular and Cellular Biology. 25 (15): 6846–6856. doi:10.1128/MCB.25.15.6846-6856.2005. PMC   1190363 . PMID   16024816.
  7. Lakshmanan HH, Melrose AR, Sepp AI, Mitrugno A, Ngo AT, Khader A, et al. (April 2021). "The basement membrane protein nidogen-1 supports platelet adhesion and activation". Platelets. 32 (3): 424–428. doi:10.1080/09537104.2020.1745170. PMC   8559984 . PMID   32233694.
  8. Dziadek M (September 1995). "Role of laminin-nidogen complexes in basement membrane formation during embryonic development". Experientia. 51 (9–10): 901–913. doi:10.1007/BF01921740. PMID   7556571.
  9. Mayer U, Kohfeldt E, Timpl R (October 1998). "Structural and genetic analysis of laminin-nidogen interaction". Annals of the New York Academy of Sciences. 857 (1): 130–142. Bibcode:1998NYASA.857..130M. doi:10.1111/j.1749-6632.1998.tb10113.x. PMID   9917838. S2CID   36725654.
  10. Kim S, Wadsworth WG (April 2000). "Positioning of longitudinal nerves in C. elegans by nidogen". Science. 288 (5463): 150–154. Bibcode:2000Sci...288..150K. doi:10.1126/science.288.5463.150. PMID   10753123.