Discipline | Nitric oxide |
---|---|
Language | English |
Edited by | Neil Hogg |
Publication details | |
History | 1997-present |
Publisher | |
Frequency | 8/year |
4.898 (2021) | |
Standard abbreviations | |
ISO 4 | Nitric Oxide |
Indexing | |
CODEN | NIOXF5 |
ISSN | 1089-8603 (print) 1089-8611 (web) |
LCCN | 97660095 |
OCLC no. | 35147437 |
Links | |
Nitric Oxide is a peer-reviewed scientific journal and official journal of the Nitric Oxide Society. The journal covers the broad field of nitric oxide and other similar gaseous signaling molecules such as hydrogen sulfide and carbon monoxide. Published research includes basic and clinical topics such as cell biology, molecular biology, biochemistry, immunology, pathology, genetics, physiology, pharmacology, and disease processes.
The journal is abstracted and indexed in EMBASE, EMBiology, and Scopus. According to the Journal Citation Reports , the journal has a 2021 impact factor of 4.898. [1]
Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russia rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium mixture with nitrogen dioxide. Its molar mass is 92.011 g/mol.
Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.
Sodium nitrite is an inorganic compound with the chemical formula NaNO2. It is a white to slightly yellowish crystalline powder that is very soluble in water and is hygroscopic. From an industrial perspective, it is the most important nitrite salt. It is a precursor to a variety of organic compounds, such as pharmaceuticals, dyes, and pesticides, but it is probably best known as a food additive used in processed meats and (in some countries) in fish products.
Nitric oxide synthases (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS and nNOS. The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.
Tetrahydrobiopterin (BH4, THB), also known as sapropterin (INN), is a cofactor of the three aromatic amino acid hydroxylase enzymes, used in the degradation of amino acid phenylalanine and in the biosynthesis of the neurotransmitters serotonin (5-hydroxytryptamine, 5-HT), melatonin, dopamine, norepinephrine (noradrenaline), epinephrine (adrenaline), and is a cofactor for the production of nitric oxide (NO) by the nitric oxide synthases. Chemically, its structure is that of a (dihydropteridine reductase) reduced pteridine derivative (quinonoid dihydrobiopterin).
Sir Salvador Moncada, FRS, FRCP, FMedSci is a Honduran-British pharmacologist and professor. He is currently Research Domain Director for Cancer at the University of Manchester.
Gasotransmitters is a class of neurotransmitters. The molecules are distinguished from other bioactive endogenous gaseous signaling molecules based on a need to meet distinct characterization criteria. Currently, only nitric oxide, carbon monoxide, and hydrogen sulfide are accepted as gasotransmitters.
Louis J. Ignarro is an American pharmacologist. For demonstrating the signaling properties of nitric oxide, he was co-recipient of the 1998 Nobel Prize in Physiology or Medicine with Robert F. Furchgott and Ferid Murad.
In chemistry, a NONOate is a compound having the chemical formula R1R2N−(NO−)−N=O, where R1 and R2 are alkyl groups. One example for this is 1,1-diethyl-2-hydroxy-2-nitrosohydrazine, or diethylamine dinitric oxide. These compounds are unusual in having three sequential nitrogen atoms: an amine functional group, a bridging NO− group, and a terminal nitrosyl group. In contact with water, these compounds release NO (nitric oxide).
S-Nitroso-N-acetylpenicillamine (SNAP) is the organosulfur compound with the formula ONSC(CH3)2CH(NHAc)CO2H. It is a green solid.
Soluble guanylyl cyclase (sGC) is the only known receptor for nitric oxide, NO. It is soluble, i.e. completely intracellular. Most notably, this enzyme is involved in vasodilation. In humans, it is encoded by the genes GUCY1A2, GUCY1A3, GUCY1B2 and GUCY1B3.
Endothelial NOS (eNOS), also known as nitric oxide synthase 3 (NOS3) or constitutive NOS (cNOS), is an enzyme that in humans is encoded by the NOS3 gene located in the 7q35-7q36 region of chromosome 7. This enzyme is one of three isoforms that synthesize nitric oxide (NO), a small gaseous and lipophilic molecule that participates in several biological processes. The other isoforms include neuronal nitric oxide synthase (nNOS), which is constitutively expressed in specific neurons of the brain and inducible nitric oxide synthase (iNOS), whose expression is typically induced in inflammatory diseases. eNOS is primarily responsible for the generation of NO in the vascular endothelium, a monolayer of flat cells lining the interior surface of blood vessels, at the interface between circulating blood in the lumen and the remainder of the vessel wall. NO produced by eNOS in the vascular endothelium plays crucial roles in regulating vascular tone, cellular proliferation, leukocyte adhesion, and platelet aggregation. Therefore, a functional eNOS is essential for a healthy cardiovascular system.
Nitric oxide synthase, inducible is an enzyme which is encoded by the NOS2 gene in humans and mice.
Dynein light chain 1, cytoplasmic is a protein that in humans is encoded by the DYNLL1 gene.
S-Nitrosothiols, also known as thionitrites, are organic compounds or functional groups containing a nitroso group attached to the sulfur atom of a thiol. S-Nitrosothiols have the general formula RSNO, where R denotes an organic group. Originally suggested by Ignarro to serve as intermediates in the action of organic nitrates, endogenous S-nitrosothiols were discovered by Stamler and colleagues and shown to represent a main source of NO bioactivity in vivo. More recently, S-nitrosothiols have been implicated as primary mediators of protein S-nitrosylation, the oxidative modification of cysteine thiol that provides ubiquitous regulation of protein function.
Nitric oxide is a molecule and chemical compound with chemical formula of NO. In mammals including humans, nitric oxide is a signaling molecule involved in several physiological and pathological processes. It is a powerful vasodilator with a half-life of a few seconds in the blood. Standard pharmaceuticals such as nitroglycerine and amyl nitrite are precursors to nitric oxide. Low levels of nitric oxide production are typically due to ischemic damage in the liver.
David S. Bredt is an American molecular neuroscientist.
Sir Patrick John Thompson Vallance is a British physician, scientist, and clinical pharmacologist who has worked in both academia and industry. He has served as the Chief Scientific Adviser to the Government of the United Kingdom since 2018.
David James Paterson Hon FRSNZ is a New Zealand-born British physiologist and academic. He is a Fellow of Merton College, Oxford at the University of Oxford. He is also the Head of the Department of Physiology, Anatomy and Genetics at Oxford, and President of The Physiological Society. Paterson is best known for his work in cardiac neurobiology, linking the nervous system to heart rhythm, which was featured in the 2012 BBC Four documentary Heart v Mind: What Makes Us Human?, and associated interviews on RNZ National Science programme Heart v Mind. In 2018 he co-authored with Neil Herring the text book Levick's Introduction to Cardiovascular Physiology, 6th edition.
Tin(IV) nitrate is a salt of tin with nitric acid. Unlike other nitrates it reacts with water to produce nitrogen dioxide.