Nonradiation condition

Last updated

Classical nonradiation conditions define the conditions according to classical electromagnetism under which a distribution of accelerating charges will not emit electromagnetic radiation. According to the Larmor formula in classical electromagnetism, a single point charge under acceleration will emit electromagnetic radiation. In some classical electron models a distribution of charges can however be accelerated so that no radiation is emitted. [1] The modern derivation of these nonradiation conditions by Hermann A. Haus is based on the Fourier components of the current produced by a moving point charge. It states that a distribution of accelerated charges will radiate if and only if it has Fourier components synchronous with waves traveling at the speed of light. [2]

Contents

History

Finding a nonradiating model for the electron on an atom dominated the early work on atomic models. In a planetary model of the atom, the orbiting point electron would constantly accelerate towards the nucleus, and thus according to the Larmor formula emit electromagnetic waves. In 1910 Paul Ehrenfest published a short paper on "Irregular electrical movements without magnetic and radiation fields" demonstrating that Maxwell's equations allow for the existence of accelerating charge distributions which emit no radiation. [3] In 1913, the Bohr model of the atom abandoned the efforts to explain why its bound electrons do not radiate by postulating that they did not radiate. This was later subsumed by a postulate of quantum theory called Schrödinger's equation. In the meantime, our understanding of classical nonradiation has been considerably advanced since 1925. Beginning as early as 1933, George Adolphus Schott published a surprising discovery that a charged sphere in accelerated motion (such as the electron orbiting the nucleus) may have radiationless orbits. [4] Admitting that such speculation was out of fashion, he suggests that his solution may apply to the structure of the neutron. In 1948, Bohm and Weinstein also found that charge distributions may oscillate without radiation; they suggest that a solution which may apply to mesons. [5] Then in 1964, Goedecke derived, for the first time, the general condition of nonradiation for an extended charge-current distribution, and produced many examples, some of which contained spin and could conceivably be used to describe fundamental particles. Goedecke was led by his discovery to speculate: [6]

Naturally, it is very tempting to hypothesize from this that the existence of Planck's constant is implied by classical electromagnetic theory augmented by the conditions of no radiation. Such a hypothesis would be essentially equivalent to suggesting a 'theory of nature' in which all stable particles (or aggregates) are merely nonradiating charge-current distributions whose mechanical properties are electromagnetic in origin.

The nonradiation condition went largely ignored for many years. Philip Pearle reviews the subject in his 1982 article Classical Electron Models. [7] A Reed College undergraduate thesis on nonradiation in infinite planes and solenoids appears in 1984. [8] An important advance occurred in 1986, when Hermann Haus derived Goedecke's condition in a new way. [2] Haus finds that all radiation is caused by Fourier components of the charge/current distribution that are lightlike (i.e. components that are synchronous with light speed). When a distribution has no lightlike Fourier components, such as a point charge in uniform motion, then there is no radiation. Haus uses his formulation to explain Cherenkov radiation in which the speed of light of the surrounding medium is less than c.

Applications

See also

Notes

  1. Pearle, Philip (1978). "When can a classical electron accelerate without radiating?". Foundations of Physics. 8 (11–12): 879–891. Bibcode:1978FoPh....8..879P. doi:10.1007/BF00715060. S2CID   121169154.
  2. 1 2 Haus, H. A. (1986). "On the radiation from point charges". American Journal of Physics. 54 (12): 1126–1129. Bibcode:1986AmJPh..54.1126H. doi:10.1119/1.14729.
  3. Ehrenfest, Paul (1910). "Ungleichförmige Elektrizitätsbewegungen ohne Magnet- und Strahlungsfeld". Physikalische Zeitschrift. 11: 708–709.
  4. Schott, G. A. (1933). "The Electromagnetic Field of a Moving Uniformly and Rigidly Electrified Sphere and its Radiationless Orbits". Philosophical Magazine. 7. 15: 752–761. doi:10.1080/14786443309462219.
  5. Bohm, D.; Weinstein, M. (1948). "The Self-Oscillations of a Charged Particle". Physical Review. 74 (12): 1789–1798. Bibcode:1948PhRv...74.1789B. doi:10.1103/PhysRev.74.1789.
  6. Goedecke, G. H. (1964). "Classically Radiationless Motions and Possible Implications for Quantum Theory". Physical Review. 135 (1B): B281–B288. Bibcode:1964PhRv..135..281G. doi:10.1103/PhysRev.135.B281.
  7. Pearle, Philip (1982). "Classical Electron Models". In Teplitz, Doris (ed.). Electromagnetism: paths to research. New York: Plenum. pp. 211–295. doi:10.1007/978-1-4757-0650-5_7. ISBN   978-1-4757-0652-9.
  8. Abbott, Tyler A; Griffiths, David J (1985). "Acceleration without radiation". American Journal of Physics. 53 (12): 1203. Bibcode:1985AmJPh..53.1203A. doi:10.1119/1.14084. OSTI   1447538.

Related Research Articles

<span class="mw-page-title-main">Bohr model</span> Atomic model introduced by Niels Bohr in 1913

In atomic physics, the Bohr model or Rutherford–Bohr model of the atom, presented by Niels Bohr and Ernest Rutherford in 1913, consists of a small, dense nucleus surrounded by orbiting electrons. It is analogous to the structure of the Solar System, but with attraction provided by electrostatic force rather than gravity. In the history of atomic physics, it followed, and ultimately replaced, several earlier models, including Joseph Larmor's solar system model (1897), Jean Perrin's model (1901), the cubical model (1902), Hantaro Nagaoka's Saturnian model (1904), the plum pudding model (1904), Arthur Haas's quantum model (1910), the Rutherford model (1911), and John William Nicholson's nuclear quantum model (1912). The improvement over the 1911 Rutherford model mainly concerned the new quantum mechanical interpretation introduced by Haas and Nicholson, but forsaking any attempt to explain radiation according to classical physics.

<span class="mw-page-title-main">Electromagnetic radiation</span> Waves of the electromagnetic field

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. Types of EMR include radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays, all of which are part of the electromagnetic spectrum.

<span class="mw-page-title-main">Electron</span> Elementary particle with negative charge

The electron is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, per the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

<span class="mw-page-title-main">Photon</span> Elementary particle or quantum of light

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458 m/s. The photon belongs to the class of boson particles.

<span class="mw-page-title-main">Photoelectric effect</span> Emission of electrons when light hits a material

The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid state and quantum chemistry to draw inferences about the properties of atoms, molecules and solids. The effect has found use in electronic devices specialized for light detection and precisely timed electron emission.

<span class="mw-page-title-main">Radiation pressure</span> Pressure exerted upon any surface exposed to electromagnetic radiation

Radiation pressure is the mechanical pressure exerted upon any surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of any wavelength that is absorbed, reflected, or otherwise emitted by matter on any scale. The associated force is called the radiation pressure force, or sometimes just the force of light.

Cyclotron radiation is electromagnetic radiation emitted by non-relativistic accelerating charged particles deflected by a magnetic field. The Lorentz force on the particles acts perpendicular to both the magnetic field lines and the particles' motion through them, creating an acceleration of charged particles that causes them to emit radiation as a result of the acceleration they undergo as they spiral around the lines of the magnetic field.

<span class="mw-page-title-main">Synchrotron radiation</span> Electromagnetic radiation emitted by charged particles accelerated perpendicular to their velocity

Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Ultraviolet catastrophe</span> Classical physics prediction that black body radiation grows unbounded with frequency

The ultraviolet catastrophe, also called the Rayleigh–Jeans catastrophe, was the prediction of late 19th century/early 20th century classical physics that an ideal black body at thermal equilibrium would emit an unbounded quantity of energy as wavelength decreased into the ultraviolet range.The term "ultraviolet catastrophe" was first used in 1911 by Paul Ehrenfest, but the concept originated with the 1900 statistical derivation of the Rayleigh–Jeans law.

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).

<span class="mw-page-title-main">Thomson scattering</span> Low energy photon scattering off charged particles

Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering: the particle's kinetic energy and photon frequency do not change as a result of the scattering. This limit is valid as long as the photon energy is much smaller than the mass energy of the particle: , or equivalently, if the wavelength of the light is much greater than the Compton wavelength of the particle.

<span class="mw-page-title-main">Undulator</span>

An undulator is an insertion device from high-energy physics and usually part of a larger installation, a synchrotron storage ring, or it may be a component of a free electron laser. It consists of a periodic structure of dipole magnets. These can be permanent magnets or superconducting magnets. The static magnetic field alternates along the length of the undulator with a wavelength . Electrons traversing the periodic magnet structure are forced to undergo oscillations and thus to radiate energy. The radiation produced in an undulator is very intense and concentrated in narrow energy bands in the spectrum. It is also collimated on the orbit plane of the electrons. This radiation is guided through beamlines for experiments in various scientific areas.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

<span class="mw-page-title-main">Larmor formula</span> Gives the total power radiated by an accelerating, nonrelativistic point charge

In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.

<span class="mw-page-title-main">Electron scattering</span> Deviation of electrons from their original trajectories

Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

In the physics of electromagnetism, the Abraham–Lorentz force is the recoil force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena -- blackbody radiation, the photoelectric effect, solar emission spectra -- an era called the Old or Older quantum theories. The invention of wave mechanics by Schrodinger and expanded by many others triggers the "modern" era beginning around 1925. Dirac's relativistic quantum theory work lead him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

George Adolphus Schott FRS was a British mathematician. He is best known for developing the full theory of radiation from electrons travelling at close to the speed of light.

<span class="mw-page-title-main">NA63 experiment</span>

The NA63 experiment aims to study the radiation process in strong electromagnetic fields. Located at CERN, in the North Area. It is a fixed-target experiment which uses the H4 secondary electron beams from the SPS, which are directed onto different targets. Those are made from a variety of elements, ranging from the relatively light carbon and silicon, through the heavier iron and tin to tungsten, gold and lead and are either amorphous or mono-crystals.