This article includes a list of general references, but it lacks sufficient corresponding inline citations .(February 2010) |
Ocular myasthenia | |
---|---|
Specialty | Ophthalmology |
Ocular myasthenia gravis (MG) is a disease of the neuromuscular junction resulting in hallmark variability in muscle weakness and fatigability. MG is an autoimmune disease where anomalous antibodies are produced against the naturally occurring acetylcholine receptors in voluntary muscles. MG may be limited to the muscles of the eye (ocular MG), leading to abrupt onset of weakness/fatigability of the eyelids or eye movement. MG may also involve other muscle groups (generalized MG).
Although these blocking antibodies may be confined to one of the larger muscles responsible for moving the face or appendages or for breathing, about 90% of MG patients eventually have eye involvement. The most common symptoms are double vision (diplopia) and eyelid drooping (ptosis), whereas the pupil is always spared. Diplopia occurs when MG affects a single extraocular muscle in one eye, limiting eye movement and leading to double vision when the eye is turned toward the affected muscle. Ptosis occurs when the levator palpebrae superioris (the muscle responsible for eyelid elevation) is affected on one or both sides, leading to eyelid drooping. Although these symptoms may not be readily apparent in well-rested patients, weakness can usually be induced with exercise of the commonly affected muscles (e.g. by having the patient look upward for about 60 seconds).
In 75% of MG cases, the initial manifestation is in the eye. Within 2 years, 80% of patients with ocular onset of MG will progress to involve other muscle groups, thereby developing generalized MG.[ citation needed ] If MG is confined to the ocular muscles for more than 3 years, there is a 94% likelihood that the symptoms will not worsen or generalize.[ citation needed ]
Aside from asymmetric ptosis (which becomes worse with fatigue, sustained upgaze, and at the end of the day) and variable limitation of extraocular muscles/diplopia, other clinical signs of ocular MG include gaze-evoked nystagmus (rapid, involuntary, oscillatory motion of the eyeball) and Cogan’s lid twitch (upper lid twitch present when patient looks straight ahead after looking down for 10–15 seconds).
Normally, muscle contraction is a result of electrical signals sent from the central nervous system to muscle fibers via nerve impulses. At the neuromuscular junction, this electrical message is converted into a chemical message as acetylcholine is released from nerve fibers and attaches to corresponding receptors on the muscle fiber.
In MG, antibodies are produced that block acetylcholine receptors, preventing the molecule from binding to the receptor and leading to a breakdown in communication between the nervous system and the muscle, resulting in muscle fatigue, and sometimes paralysis. Autoantibodies against acetylcholine receptors are detectable in 70–90% of patients with generalized MG, but only 50% in ocular MG.
The precise reasons for the preferential involvement of eye muscles in MG is not well understood, but there are several lines of thought.
Functional hypotheses propose that although multiple muscles may be affected, a deficit may be more readily apparent in the eyes for several reasons. Slight weakness in a limb may be tolerated, but slight weakness in the extraocular muscles would lead to misalignment of the two eyes, even a small degree of which could lead to diplopia. Eyes may also be less able to adapt to variable weakness, because extraocular muscles use visual rather than proprioceptive (body position-sensing) cues for fine-tuning.
Immunologic hypotheses proposes that there may be differences in the antibodies in ocular MG versus generalized MG that may favor the muscles responsible for eye movement and eyelid elevation.
Physiologic hypotheses propose that it is the unique structure and function of extraocular muscles that predispose them to weakness in MG. Compared to extremity muscles, extraocular muscles are smaller, served by more nerve fibers, and are among the fastest contracting muscles in the body. This higher level of activity may predispose them to fatigue in MG. Additionally, some reports indicate that there may be fewer acetylcholine receptors in extraocular muscles versus limb muscles.
The variable course of MG may make the diagnosis difficult. In brief, the diagnosis of MG relies mostly on the patient's history and physical findings, with particular attention to neurologic, eye motility, and eyelid exams. Frequently, patients will describe experiencing alternating ptosis (lid droop in one eye that gets better, then is followed by ptosis in the other eye), as well as diplopia that worsens during the day (with increasing extraocular muscle fatigue).
A tensilon (edrophonium chloride) test can be used, which temporarily blocks the breakdown of acetylcholine, and briefly relieves weakness; however, false-negative results are common. Single-fiber electromyography can be used to electrically stimulate single muscle fibers to determine if there is muscle weakness present. The diagnosis of MG can also be confirmed with blood work that measures the amount of blocking antibody present, but only 70% of ocular MG patients have detectable antibody levels. Additional lab and image tests for commonly associated thyroid, thymus and autoimmune diseases are also advisable.
The prognosis tends to be good for patients with MG. It is often best not to treat mild cases of MG. Management necessitates avoidance of medications that can worsen neuromuscular transmission, such as aminoglycoside antibiotics, quinolone antibiotics, beta-blockers, chloroquine, anti-arrhythmics, calcium channel blockers, some anticonvulsants and intravenous iodinated contrast should be avoided.
MG is characteristically variable in course, with the frequency of diplopia and ptosis affected by environmental, emotional and physical factors such as bright sunlight, stress, viral illness, menstruation, pregnancy, etc. Spontaneous remission can occur in any patient and remain for years. In a study of the natural history of generalized MG among 168 patients (with an average follow-up of 12 years), 14% experienced complete remission.
Patients with mild-to-moderate ocular myasthenia are usually treated initially with oral anticholinesterase agents, Mestinon (pyridostigmine) being the most commonly employed. There have not been any randomized clinical trials conducted with these agents, and this treatment is often unsuccessful, particularly in resolving diplopia. Immunosuppressive therapy is then started and the agent of choice is usually prednisone. In a small controlled study this drug demonstrated greater efficacy than pyridostigmine. [1] Steroid therapy is controversial, but in another study the results suggested that prednisone does decrease progression to generalized MG. [2] There is no single recommended dosing regimen in light of the side effects commonly associated with chronic corticosteroid therapy, and the difficulty in weaning patients from steroids without exacerbation of symptoms. Response to prednisone therapy is variable.
Additionally, MG patients should be examined for thymomas, and if found, should undergo surgery to address this condition. A prophylactic thymectomy is controversial, but has been shown to be helpful in young MG patients with acute disease within 3 years of disease onset, in patients with enlarged thymus glands and for whom surgery is low-risk, and patients with generalized MG who are unresponsive to medical treatment.
The symptoms of ocular MG can also be addressed by non-medicinal means. Ptosis can be corrected with placement of crutches on eyeglasses and with ptosis tape to elevate eyelid droop. Diplopia can be addressed by occlusion with eye patching, frosted lens, occluding contact lens, or by simply placing opaque tape over a portion of eyeglasses. Also, plastic prisms (Fresnel prisms) can be attached to eyeglasses of a diplopic patient, allowing for alignment of vision from both eyes in the affected direction, but are often problematic if the degree of muscle weakness, and therefore ocular misalignment, fluctuates frequently.
In contrast to generalized MG, purely ocular MG occurs equally among females and males, has a higher incidence in persons of Korean descent, and is likely associated with thyroid disease, thymomas (20% incidence), [3] and other autoimmune diseases such as scleroderma, systemic lupus erythematosus, rheumatoid arthritis, Hashimoto's thyroiditis, multiple sclerosis, and thyroid ophthalmopathy.
Lambert–Eaton myasthenic syndrome (LEMS) is a rare autoimmune disorder characterized by muscle weakness of the limbs.
Myasthenia gravis (MG) is a long-term neuromuscular junction disease that leads to varying degrees of skeletal muscle weakness. The most commonly affected muscles are those of the eyes, face, and swallowing. It can result in double vision, drooping eyelids, and difficulties in talking and walking. Onset can be sudden. Those affected often have a large thymus or develop a thymoma.
Morvan's syndrome is a rare, life-threatening autoimmune disease named after the nineteenth century French physician Augustin Marie Morvan. "La chorée fibrillaire" was first coined by Morvan in 1890 when describing patients with multiple, irregular contractions of the long muscles, cramping, weakness, pruritus, hyperhidrosis, insomnia and delirium. It normally presents with a slow insidious onset over months to years. Approximately 90% of cases spontaneously go into remission, while the other 10% of cases lead to death.
A neuromuscular junction is a chemical synapse between a motor neuron and a muscle fiber.
A thymoma is a tumor originating from the epithelial cells of the thymus that is considered a rare malignancy. Thymomas are frequently associated with neuromuscular disorders such as myasthenia gravis; thymoma is found in 20% of patients with myasthenia gravis. Once diagnosed, thymomas may be removed surgically. In the rare case of a malignant tumor, chemotherapy may be used.
An eye examination is a series of tests performed to assess vision and ability to focus on and discern objects. It also includes other tests and examinations pertaining to the eyes. Eye examinations are primarily performed by an optometrist, ophthalmologist, or an orthoptist. Health care professionals often recommend that all people should have periodic and thorough eye examinations as part of routine primary care, especially since many eye diseases are asymptomatic.
End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates" because the postsynaptic terminals of muscle fibers have a large, saucer-like appearance. When an action potential reaches the axon terminal of a motor neuron, vesicles carrying neurotransmitters are exocytosed and the contents are released into the neuromuscular junction. These neurotransmitters bind to receptors on the postsynaptic membrane and lead to its depolarization. In the absence of an action potential, acetylcholine vesicles spontaneously leak into the neuromuscular junction and cause very small depolarizations in the postsynaptic membrane. This small response (~0.4mV) is called a miniature end plate potential (MEPP) and is generated by one acetylcholine-containing vesicle. It represents the smallest possible depolarization which can be induced in a muscle.
Sixth nerve palsy, or abducens nerve palsy, is a disorder associated with dysfunction of cranial nerve VI, which is responsible for causing contraction of the lateral rectus muscle to abduct the eye. The inability of an eye to turn outward, results in a convergent strabismus or esotropia of which the primary symptom is diplopia in which the two images appear side-by-side. Thus, the diplopia is horizontal and worse in the distance. Diplopia is also increased on looking to the affected side and is partly caused by overaction of the medial rectus on the unaffected side as it tries to provide the extra innervation to the affected lateral rectus. These two muscles are synergists or "yoke muscles" as both attempt to move the eye over to the left or right. The condition is commonly unilateral but can also occur bilaterally.
A tensilon test, also called an edrophonium test, is a pharmacological test used for the diagnosis of certain neural diseases, especially myasthenia gravis. It is also used to distinguish a myasthenic crisis from a cholinergic crisis in individuals undergoing treatment for myasthenia gravis. The test has fallen out of use due to suboptimal sensitivity and specificity as well as associated adverse risks. Edrophonium is no longer available in the United States and many other countries as of 2018.
Graves’ ophthalmopathy, also known as thyroid eye disease (TED), is an autoimmune inflammatory disorder of the orbit and periorbital tissues, characterized by upper eyelid retraction, lid lag, swelling, redness (erythema), conjunctivitis, and bulging eyes (exophthalmos). It occurs most commonly in individuals with Graves' disease, and less commonly in individuals with Hashimoto's thyroiditis, or in those who are euthyroid.
Hypertropia is a condition of misalignment of the eyes (strabismus), whereby the visual axis of one eye is higher than the fellow fixating eye. Hypotropia is the similar condition, focus being on the eye with the visual axis lower than the fellow fixating eye. Dissociated vertical deviation is a special type of hypertropia leading to slow upward drift of one or rarely both eyes, usually when the patient is inattentive.
Ptosis, also known as blepharoptosis, is a drooping or falling of the upper eyelid. This condition is sometimes called "lazy eye," but that term normally refers to the condition amblyopia. If severe enough and left untreated, the drooping eyelid can cause other conditions, such as amblyopia or astigmatism, so it is especially important to treat the disorder in children before it can interfere with vision development.
Oculomotor nerve palsy or oculomotor neuropathy is an eye condition resulting from damage to the third cranial nerve or a branch thereof. As the name suggests, the oculomotor nerve supplies the majority of the muscles controlling eye movements. Damage to this nerve will result in an inability to move the eye normally. The nerve also supplies the upper eyelid muscle and is accompanied by parasympathetic fibers innervating the muscles responsible for pupil constriction. The limitations of eye movement resulting from the condition are generally so severe that patients are often unable to maintain normal eye alignment when gazing straight ahead, leading to strabismus and, as a consequence, double vision (diplopia).
Congenital myasthenic syndrome (CMS) is an inherited neuromuscular disorder caused by defects of several types at the neuromuscular junction. The effects of the disease are similar to Lambert-Eaton Syndrome and myasthenia gravis, the difference being that CMS is not an autoimmune disorder. There are only 600 known family cases of this disorder and it is estimated that its overall frequency in the human population is 1 in 200,000.
Chronic progressive external ophthalmoplegia (CPEO) is a type of eye disorder characterized by slowly progressive inability to move the eyes and eyebrows. It is often the only feature of mitochondrial disease, in which case the term CPEO may be given as the diagnosis. In other people suffering from mitochondrial disease, CPEO occurs as part of a syndrome involving more than one part of the body, such as Kearns–Sayre syndrome. Occasionally CPEO may be caused by conditions other than mitochondrial diseases.
Neuromuscular junction disease is a medical condition where the normal conduction through the neuromuscular junction fails to function correctly.
Bienfang's test is a clinical test used in the diagnosis of ocular myasthenia gravis. It is used in conjunction with other examination techniques such as Cogan's lid twitch test or enhancement of blepharoptosis from prolonged upward gaze. It is a simple, quick, and non-invasive test for ocular myasthenia gravis that can be performed not only by ophthalmologists or neurologists, but also by other physicians evaluating patients with ptosis, diplopia, or other symptoms of myasthenia gravis.
Simpson test is a clinical test used in neurology to determine ocular myasthenia gravis. It was first described by the Scottish neurologist John Alexander Simpson.
Efgartigimod alfa, sold under the brand name Vyvgart, is a medication used to treat myasthenia gravis. Efgartigimod alfa is a neonatal Fc receptor blocker and is a new class of medication. It is an antibody fragment that binds to the neonatal Fc receptor (FcRn), preventing FcRn from recycling immunoglobulin G (IgG) back into the blood. The medication causes a reduction in overall levels of IgG, including the abnormal acetylcholine receptor (AChR) antibodies that are present in myasthenia gravis. It is also available coformulated with hyaluronidase.
Efgartigimod alfa/hyaluronidase, sold under the brand name Vyvgart Hytrulo, is a coformulation medication used for the treatment of generalized myasthenia gravis. It contains efgartigimod alfa, a neonatal Fc receptor blocker, and hyaluronidase, an endoglycosidase.