This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
O. C. Uhlenbeck | |
---|---|
Citizenship | American |
Alma mater | University of Michigan Harvard University |
Known for | RNA synthesis from synthetic templates, RNA-protein interactions, RNA Biochemistry |
Spouse | |
Scientific career | |
Fields | Biochemistry Biophysics |
Institutions | University of Illinois University of Colorado Northwestern University |
Doctoral advisor | Paul Doty |
Olke C. Uhlenbeck is a Professor Emeritus of Biochemistry at the University of Colorado Boulder [1] and at Northwestern University. [2] [3]
His research group has led to many breakthroughs in RNA biochemistry, including the enzymatic synthesis of RNAs from synthetic DNA templates using T7 RNA polymerase. [4] [ better source needed ] Olke was a founding member of the RNA Society. [5] His father was theoretical physicist George Uhlenbeck.
He completed his undergraduate degree at the University of Michigan at Ann Arbor in 1964, and then completed his doctorate in biophysics at Harvard University in 1969 under the supervision of Paul Doty. [6] As a graduate student in Paul Doty's lab, Uhlenbeck showed that the anticodon of tRNA was accessible to hybridization to oligonucleotides. [7] [ better source needed ]
He is known for his studies of RNA biochemistry. Some[ who? ] have called him the "Father of RNA". [8]
Uhlenbeck was first published in 1968 at Harvard University for an article titled, "Some Effects on Noncomplementary Bases on the Stability of Helical Complexes of Polyribonucleotides". The study overviews the conformation of specific polyribonucleotide sequences. [9]
In the 1970s, he began his work on RNA. As a Miller Research Fellow in Ignacio Tinoco, Jr.'s lab he helped define an original model for RNA secondary structure prediction. [10] [ better source needed ]
In 1987, his research found that transcription occurs at variable initiation sites that can produce small nucleotide strands. These different strands contribute to the variability of RNA. Uhlenbeck and colleagues described a method to make small ribonucleotide sequences that were specific to synthetic DNA used in the study. [11]
He has also researched RNA polymerases that are involved in the creation of DNA synthesis, working on the analysis and understanding of the R17 protein coat. [12] Following that research, he along with a group of colleagues defined the accepted model of RNA secondary structure. [6]
Uhlenbeck studied how amino acids that are esterified interact with tRNA differently. [13]
This article may contain wording that promotes the subject through exaggeration of unnoteworthy facts .(June 2021) |
Uhlenbeck runs the Uhlenbeck lab at Northwestern University after having moved it from the University of Colorado Boulder. Their current research focuses on the recognition and activity of modified tRNA. One of their major focuses is the development of an aminoacyl tRNA synthetase, which allows the researchers to conduct their experiment when there is excess enzyme in the environment. [2]
Notable contributions include:
In 1993, Uhlenbeck was inducted into the National Academy of Sciences for his work in RNA biochemistry. [14]
John Milligan and his wife created the "Olke C. Uhlenbeck Endowed Graduate Fund" which funds the tuition of first-year graduate students pursuing their doctorate degrees at the University of Colorado, Boulder. It was named after Uhlenbeck because of the impact he made on the biochemistry department at Colorado. [6]
In 2013, Uhlenbeck was awarded the Fritz Lipmann Lectureship, which is given to someone who has made substantial and influential advancements in biochemistry. He was awarded this due to his research on RNA biochemistry. The award includes a $3,000 prize and funding to present at the Experimental Biology conference in Boston. [8]
Uhlenbeck's father was theoretical physicist George Uhlenbeck. He was married to Karen Uhlenbeck between 1965 and 1976. [15] John F. Milligan, a colleague of Uhlenbeck's, said that he appreciated the conversations they had as he developed into a scientist. He also said that Uhlenbeck taught him how to be a leader by showing him what it meant to be engaged in research and how to be intellectually curious. This was said by Milligan after his time working in the Uhlenbeck lab at the CU Boulder. [6]
In biochemistry, a polymerase is an enzyme that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication.
In molecular biology, RNA polymerase, or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction
Ribozymes are RNA molecules that have the ability to catalyze specific biochemical reactions, including RNA splicing in gene expression, similar to the action of protein enzymes. The 1982 discovery of ribozymes demonstrated that RNA can be both genetic material and a biological catalyst, and contributed to the RNA world hypothesis, which suggests that RNA may have been important in the evolution of prebiotic self-replicating systems.
A nucleic acid sequence is a succession of bases within the nucleotides forming alleles within a DNA or RNA (GACU) molecule. This succession is denoted by a series of a set of five different letters that indicate the order of the nucleotides. By convention, sequences are usually presented from the 5' end to the 3' end. For DNA, with its double helix, there are two possible directions for the notated sequence; of these two, the sense strand is used. Because nucleic acids are normally linear (unbranched) polymers, specifying the sequence is equivalent to defining the covalent structure of the entire molecule. For this reason, the nucleic acid sequence is also termed the primary structure.
DNA primase is an enzyme involved in the replication of DNA and is a type of RNA polymerase. Primase catalyzes the synthesis of a short RNA segment called a primer complementary to a ssDNA template. After this elongation, the RNA piece is removed by a 5' to 3' exonuclease and refilled with DNA.
DNA synthesis is the natural or artificial creation of deoxyribonucleic acid (DNA) molecules. DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure. DNA synthesis occurs when these nucleotide units are joined to form DNA; this can occur artificially or naturally. Nucleotide units are made up of a nitrogenous base, pentose sugar (deoxyribose) and phosphate group. Each unit is joined when a covalent bond forms between its phosphate group and the pentose sugar of the next nucleotide, forming a sugar-phosphate backbone. DNA is a complementary, double stranded structure as specific base pairing occurs naturally when hydrogen bonds form between the nucleotide bases.
In molecular biology and biochemistry, processivity is an enzyme's ability to catalyze "consecutive reactions without releasing its substrate".
Xenobiology (XB) is a subfield of synthetic biology, the study of synthesizing and manipulating biological devices and systems. The name "xenobiology" derives from the Greek word xenos, which means "stranger, alien". Xenobiology is a form of biology that is not (yet) familiar to science and is not found in nature. In practice, it describes novel biological systems and biochemistries that differ from the canonical DNA–RNA-20 amino acid system. For example, instead of DNA or RNA, XB explores nucleic acid analogues, termed xeno nucleic acid (XNA) as information carriers. It also focuses on an expanded genetic code and the incorporation of non-proteinogenic amino acids, or “xeno amino acids” into proteins.
Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural five-carbon ribose sugar found in RNA has been replaced by an unnatural four-carbon threose sugar. Invented by Albert Eschenmoser as part of his quest to explore the chemical etiology of RNA, TNA has become an important synthetic genetic polymer (XNA) due to its ability to efficiently base pair with complementary sequences of DNA and RNA. The main difference between TNA and DNA/RNA is their backbones. DNA and RNA have their phosphate backbones attached to the 5' carbon of the deoxyribose or ribose sugar ring, respectively. TNA, on the other hand, has it's phosphate backbone directly attached to the 3' carbon in the ring, since it does not have a 5' carbon. This modified backbone makes TNA, unlike DNA and RNA, completely refractory to nuclease digestion, making it a promising nucleic acid analog for therapeutic and diagnostic applications.
Steven Albert Benner is an American chemist. He has been a professor at Harvard University, ETH Zurich, and most recently at the University of Florida, where he was the V.T. & Louise Jackson Distinguished Professor of Chemistry. In 2005, he founded The Westheimer Institute of Science and Technology (TWIST) and the Foundation For Applied Molecular Evolution. Benner has also founded the companies EraGen Biosciences and Firebird BioMolecular Sciences LLC.
Multicopy single-stranded DNA (msDNA) is a type of extrachromosomal satellite DNA that consists of a single-stranded DNA molecule covalently linked via a 2'-5'phosphodiester bond to an internal guanosine of an RNA molecule. The resultant DNA/RNA chimera possesses two stem-loops joined by a branch similar to the branches found in RNA splicing intermediates. The coding region for msDNA, called a "retron", also encodes a type of reverse transcriptase, which is essential for msDNA synthesis.
T7 RNA Polymerase is an RNA polymerase from the T7 bacteriophage that catalyzes the formation of RNA from DNA in the 5'→ 3' direction.
RNA-dependent RNA polymerase (RdRp) or RNA replicase is an enzyme that catalyzes the replication of RNA from an RNA template. Specifically, it catalyzes synthesis of the RNA strand complementary to a given RNA template. This is in contrast to typical DNA-dependent RNA polymerases, which all organisms use to catalyze the transcription of RNA from a DNA template.
Nucleic acid sequence-based amplification, commonly referred to as NASBA, is a method in molecular biology which is used to produce multiple copies of single stranded RNA. NASBA is a two-step process that takes RNA and anneals specially designed primers, then utilizes an enzyme cocktail to amplify it.
T7 DNA polymerase is an enzyme used during the DNA replication of the T7 bacteriophage. During this process, the DNA polymerase “reads” existing DNA strands and creates two new strands that match the existing ones. The T7 DNA polymerase requires a host factor, E. coli thioredoxin, in order to carry out its function. This helps stabilize the binding of the necessary protein to the primer-template to improve processivity by more than 100-fold, which is a feature unique to this enzyme. It is a member of the Family A DNA polymerases, which include E. coli DNA polymerase I and Taq DNA polymerase.
Xeno nucleic acids (XNA) are synthetic nucleic acid analogues that have a different backbone than the ribose and deoxyribose found in the nucleic acids of naturally occurring RNA and DNA.
Abortive initiation, also known as abortive transcription, is an early process of genetic transcription in which RNA polymerase binds to a DNA promoter and enters into cycles of synthesis of short mRNA transcripts which are released before the transcription complex leaves the promoter. This process occurs in both eukaryotes and prokaryotes. Abortive initiation is typically studied in the T3 and T7 RNA polymerases in bacteriophages and in E. coli.
Deepak Thankappan Nair is an Indian Structural Biologist and a scientist at Regional Centre for Biotechnology. He is known for his studies on DNA and RNA polymerases. Deepak was a Ramanujan fellow of the Science and Engineering Research Board (2008–2013) and a recipient of the National BioScience Award for Career Development. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, for his contributions to biological sciences in 2017.
Charles Clifton Richardson is an American biochemist and professor at Harvard University. Richardson received his undergraduate education at Duke University, where he majored in medicine. He received his M.D. at Duke Medical School in 1960. Richardson works as a professor at Harvard Medical School, and he served as editor/associate editor of the Annual Review of Biochemistry from 1972 to 2003. Richardson received the American Chemical Society Award in Biological Chemistry in 1968, as well as numerous other accolades.