Open bolt

Last updated
A MAC-10 submachine gun MAC10.jpg
A MAC-10 submachine gun

A firearm is said to fire from an open bolt or open breech if, when ready to fire, the bolt and working parts are held to the rear of the receiver, with no round in the chamber. When the trigger is actuated, the bolt travels forward, feeds a cartridge from the magazine or belt into the chamber, and fires that cartridge in the same movement. Like any other self-loading design, the action is cycled by the energy released from the propellant, which sends the bolt back to the rear, compressing the mainspring in readiness for firing the next round. In an open-bolt gun firing semi-automatically, the bolt is caught and held at this point by the sear after each shot; and in automatic open-bolt fire, it's caught and held in this manner whenever the trigger is released. In contrast to this, in closed-bolt guns, the trigger and sear do not affect the movement of the bolt directly.

Contents

Generally, an open-bolt firing cycle is used for fully automatic weapons and not for semi-automatic weapons (except some semi-automatic conversions of automatic designs). Firearms using advanced primer ignition blowback inherently fire from open bolt only. [1]

Advantages

Compared to a closed-bolt design, open-bolt weapons generally have fewer moving parts. The firing pin is often part of the bolt, saving on manufacturing costs; the inertia of the bolt closing also causes the fixed firing pin to strike a blow on the primer, without need for a separate hammer/striker and spring. In automatic weapons, an open bolt helps eliminate the dangerous phenomenon known as "cook-off", in which the firing chamber becomes so hot that rounds spontaneously fire without trigger input. Open-bolt designs typically remain much cooler in operation than closed-bolt types due to the airflow allowed into the chamber, action and barrel during pauses between bursts; moreover, unlike in the case of the closed-bolt format, the initial round in a burst is not introduced into the chamber until the moment before firing, and is thus only exposed to the residual heat for a fraction of a second. These two features combine to make open-bolt operation more suitable for weapons such as machine guns, which are intended to be capable of prolonged automatic fire. Open-bolt firearms also allow water drainage in underwater firearms.

Disadvantages

Firstly, the bolt retention mechanism may fail, resulting in a spontaneous discharge (i.e. without prior trigger input), with potentially dangerous consequences. Some simple submachine gun designs, such as the Sten, can discharge spontaneously when dropped onto a hard surface – even when uncocked – as the collision can jolt the bolt backward far enough that on returning it will pick up a round from the magazine, chamber it and fire it; the risk is intrinsic to hand-held open-bolt guns unless safety features are included in the design.

Another shortcoming of the open-bolt principle is that there is a brief delay between the trigger-pull and the firing of the cartridge because the (rather inert) bolt has to move forward a significant distance between the two events. Since after the first shot an open-bolt firearm operates effectively indistinguishably from a closed-bolt firearm, this latency problem is generally less of a concern in full automatic fire and mostly applies to semi-automatic mode. The issue was most problematic in the use of forward-firing open-bolt machine guns and autocannons in (tractor configuration single-engine) fighters during the piston engine era. Given the highly dynamic nature of aerial combat, the aforementioned intrinsic firing delay of open-bolt guns is particularly undesirable. The inertia and latency inherent to the open bolt design negatively affects predictability and control and makes fitting open-bolt designs with synchronization gear to fire through the propeller blades difficult and often requiring extensive modification (but not impossible). [2] [3]

Furthermore, with unlocked simple blowback action designs, calibers over 9×19mm Parabellum become increasingly less practical because of the need for correspondingly heavier bolts as the chamber pressure increases. In simple blowback open-bolt designs, even in such relatively low-power calibers, the movement of the heavy bolt mass within the gun negatively affects aim and accuracy in two ways:

  1. In sustained automatic fire, it is difficult to keep the gun on target;
  2. In semi-automatic fire, or at the beginning of each automatic burst, the "latency problem" described above is exacerbated (due to the greater inertia of the heavier bolt).

While the latency is unavoidable with the open-bolt design, more sophisticated delayed-blowback open-bolt designs do allow for use of a lighter bolt, thus reducing the gap in performance between open and closed bolt types. However, these designs are uncommon due to economics and complexity.

Lastly, unless an ejection port cover is used, breech and action internals' exposure to the elements renders open-bolt designs universally vulnerable to contamination with dirt and dust through the open ejection port. Some versions of the open-bolt M3 submachine gun utilize a hinged sheet metal ejection port cover that doubles as a safety; when closed, it both covers the ejection port and blocks the bolt from closing. When ready to fire, the user simply flips the cover down, opening the ejection port and unblocking the bolt.

Other characteristics

Schematic of an Advanced Primer Ignition blowback operation that works by striking the cartridge as its moving forward before it is fully chambered. The forward inertia of the bolt and firing from an open bolt position enables handling of higher pressure ammunition, although it requires the use of rebated rim cartridges Simpified schematic of blowback mechanism with advanced primer ignition.png
Schematic of an Advanced Primer Ignition blowback operation that works by striking the cartridge as its moving forward before it is fully chambered. The forward inertia of the bolt and firing from an open bolt position enables handling of higher pressure ammunition, although it requires the use of rebated rim cartridges

An open-bolt weapon will typically have a higher rate of automatic fire than a comparable closed-bolt weapon as the bolt simply needs to return forwards in order for the weapon to fire again, while a closed-bolt design has the additional step of the hammer striking the firing pin. [4] Having a higher fire rate can be both an advantage and disadvantage depending on the situation. For handheld weapons, typically a lower rate of fire is desirable, as this will conserve ammunition and help keep the level of recoil more manageable. For vehicle-mounted weapons or fixed emplacements, however, a higher rate of fire is often desirable. In these situations, ammunition and recoil are less of a concern and the higher rate of fire will increase the likelihood of a round hitting the target, particularly when employed against fast-moving targets such as aircraft.

Many movies and video games portray open-bolt weapons as needing to be cycled after reloading. This is not generally true, however, as open-bolt weapons send the bolt carrier back into a cocked position via the excess gas after the last round is fired. The exception to this is if the weapon is fully automatic and the trigger is held down after the last round was fired (and the gun does not have a "last round bolt hold open" mechanism) at which point the bolt will fly forward once more and stay there. In this case, the bolt merely needs to be retracted to the rearward position and does not return forward as is sometimes portrayed.

Another feature of open-bolt designs is that the magazine simply needs to be removed to completely unload the weapon. A closed bolt requires the second step of cycling the action to remove the last round in the chamber (unless the weapon features an automatic hold-open device). It is essential to remove a loaded magazine before performing maintenance, or trying to cycle or close the bolt (as is often done to keep the weapon clean when not in use). If one were to close the bolt (say by pulling the trigger and riding the bolt to the closed position), as soon as the bolt closes it will fire if a loaded magazine was left in the gun. This may be true with weapons utilizing a striker, but not with a weapon using a fixed firing pin, which relies on the momentum of the bolt to impart the energy to ignite the primer. This is a common feature in basic submachine guns like the Sten gun or M3 "Grease Gun", and even some machine guns. With a fixed firing pin, when the bolt is closed gently, without the momentum of the bolt closing at normal speed, there is not enough force imparted to the firing pin to ignite the primer. In this circumstance there will be a round in the chamber and a firing pin pressing on it with some force, but not enough to ignite the primer, which requires a sharp, focused impact. However, the weapon would be at risk of firing if dropped, much like the danger of loading spitzer bullets into a weapon with a tube magazine. A related issue is that the safety of an open-bolt weapon must be designed to lock the bolt in the rearward position. Often safeties only block the movement of the trigger, so, as explained above, if the weapon is dropped or if the sear becomes worn, the bolt can slam home, firing the weapon (although this issue is true to a degree in closed-bolt firearms as well).

Uses

Closed-bolt designs are often used in rifles. The improved accuracy of closed-bolt weapons is more desirable, while the poorer heat dissipation is less of an issue for slower-firing weapons. In contrast, open-bolt designs are more often used in automatic weapons, such as machine guns. For fast-firing automatic weapons, heat will rapidly build up from sustained firing, but accuracy is of less importance. Thus, the improved heat dissipation of open-bolt designs is generally more desirable in automatic weapons. Submachine guns were for much of their life designed with open bolts such as the Thompson submachine gun, MP-40 and the Uzi, mainly for the simplicity and economical advantages, and their rates of fire and close-range nature mitigated the reduced accuracy of the design. SMGs used and built in the current day, such as the H&K MP5 series, have almost universally moved to closed bolt designs for their practical advantages.

Examples

Open-bolt

Mixed-mode

Examples of mixed mode firearms (capable of operating from either an open bolt or closed bolt) include:

Legality

Under United States federal law, fully automatic firearms are restricted under the National Firearms Act and other laws. In 1982, the Bureau of Alcohol, Tobacco, Firearms and Explosives ruled that certain semi-automatic open-bolt firearms manufactured after the date of the rulings are to be treated as fully automatic because they were "designed to shoot" automatically. [5] The aforementioned weapons are the KG-9 pistol, [6] SM-10 pistol, SM-11A pistol, SAC Carbine, [7] and the YAC Sten MK II. [8] Around the time of these rulings, the manufacture of new open-bolt semi-automatic firearms became uncommon in the United States. The open bolt semi-automatic versions of certain guns are often as costly as their fully automatic counterparts. This is because prior to the Hughes Amendment in 1986, most semi-automatic open bolt Mac-10s, Mac-11s, and several other models were lawfully converted to full auto making these rare semi-automatic open bolts even more desirable as collector's items. [9] However, there are many open-bolt firearms, that were designed from start to be semi-automatic firearms and are not classified as machine guns. The Fox Carbine is one such example of an open-bolt firearm that was ruled to not be a machine gun. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Submachine gun</span> Type of automatic firearm

A submachine gun (SMG) is a magazine-fed automatic carbine designed to fire handgun cartridges. The term "submachine gun" was coined by John T. Thompson, the inventor of the Thompson submachine gun, to describe its design concept as an automatic firearm with notably less firepower than a machine gun. As a machine gun must fire rifle cartridges to be classified as such, submachine guns are not considered machine guns.

<span class="mw-page-title-main">Action (firearms)</span> Functional mechanism of breech-loading

In firearms terminology, an action is the functional mechanism of a breech-loading firearm that handles the ammunition cartridges, or the method by which that mechanism works. Actions are technically not present on muzzleloaders, as all those are single-shot firearms with a closed off breech with the powder and projectile manually loaded from the muzzle. Instead, the muzzleloader ignition mechanism is referred to as the lock.

A semi-automatic firearm, also called a self-loading or autoloading firearm, is a repeating firearm whose action mechanism automatically loads a following round of cartridge into the chamber and prepares it for subsequent firing, but requires the shooter to manually actuate the trigger in order to discharge each shot. Typically, this involves the weapon's action utilizing the excess energy released during the preceding shot to unlock and move the bolt, extracting and ejecting the spent cartridge case from the chamber, re-cocking the firing mechanism, and loading a new cartridge into the firing chamber, all without input from the user. To fire again, however, the user must actively release the trigger, allow it to "reset", before pulling the trigger again to fire off the next round. As a result, each trigger pull only discharges a single round from a semi-automatic weapon, as opposed to a fully automatic weapon, which will shoot continuously as long as the ammunition is replete and the trigger is kept depressed.

<span class="mw-page-title-main">M50 Reising</span> Submachine gun

The .45 Reising submachine gun was manufactured by Harrington & Richardson (H&R) Arms Company in Worcester, Massachusetts, USA, and was designed and patented by Eugene Reising in 1940. The three versions of the weapon were the Model 50, the folding stock Model 55, and the semiautomatic Model 60 rifle. Over 100,000 Reisings were ordered during World War II, and were initially used by the United States Navy, Marine Corps, and the United States Coast Guard, though some were shipped to Canadian, Soviet, and other allied forces to fight the Axis powers.

<span class="mw-page-title-main">Semi-automatic pistol</span> Type of pistol

A semi-automatic pistol is a handgun that automatically ejects and loads cartridges in its chamber after every shot fired. Only one round of ammunition is fired each time the trigger is pulled, as the pistol's fire control group disconnects the trigger mechanism from the firing pin/striker until the trigger has been released and reset.

<span class="mw-page-title-main">Automatic firearm</span> Firearm that fires continuously while the trigger is depressed

An automatic firearm or fully automatic firearm is an autoloading firearm that continuously chambers and fires rounds when the trigger mechanism is actuated. The action of an automatic firearm is capable of harvesting the excess energy released from a previous discharge to feed a new ammunition round into the chamber, and then igniting the propellant and discharging the projectile by delivering a hammer or striker impact on the primer.

<span class="mw-page-title-main">Sterling submachine gun</span> Type of submachine gun

The Sterling submachine gun is a British submachine gun (SMG). It was tested by the British Army in 1944–1945, but did not start to replace the Sten until 1953. A successful and reliable design, it remained standard issue in the British Army until 1994, when it began to be replaced by the L85A1, a bullpup assault rifle.

<span class="mw-page-title-main">Closed bolt</span>

A semi or full-automatic firearm which is said to fire from a closed bolt or closed breech is one where, when ready to fire, a round is in the chamber and the bolt and working parts are forward in battery. When the trigger is pulled, the firing pin or striker fires the round; the action is cycled by the energy of the shot, sending the bolt to the rear, which extracts and ejects the empty cartridge case; and the bolt goes forward, feeding a fresh round from the magazine into the chamber, ready for the next shot.

Blowback is a system of operation for self-loading firearms that obtains energy from the motion of the cartridge case as it is pushed to the rear by expanding gas created by the ignition of the propellant charge.

<span class="mw-page-title-main">Rotating bolt</span> Method of locking used in firearms

Rotating bolt is a method of locking the breech of a firearm closed for firing. Johann Nicolaus von Dreyse developed the first rotating bolt firearm, the "Dreyse needle gun", in 1836. The Dreyse locked using the bolt handle rather than lugs on the bolt head like the Mauser M 98 or M16. The first rotating bolt rifle with two lugs on the bolt head was the Lebel Model 1886 rifle. The concept has been implemented on most firearms chambered for high-powered cartridges since the 20th century.

<span class="mw-page-title-main">Beretta M1918</span> Carbine, Submachine gun (MIDA prototype)

The Moschetto Automatico Revelli-Beretta Mod. 1915 was a self-loading carbine that entered service in 1918 with the Italian armed forces. Designed as a semi-automatic carbine, the weapon came with an overhead inserted magazine, an unconventional design based on the simplicity of allowing a spent round to be replaced using assistance from gravity. The gun was made from half of a Villar-Perosa aircraft submachine gun.

<span class="mw-page-title-main">Spectre M4</span> Submachine gun

The Spectre M4 is an Italian submachine gun that was produced by the SITES factory in Turin. It was designed by Roberto Teppa and Claudio Gritti in the mid-1980s. Production in Italy ceased in the year 1997, with the closure of SITES, but proceeded in very small numbers in Switzerland through Greco Sport S.A., a company founded by Gritti, until 2001. The Spectre is a compact and light weapon, designed for instant firepower in close combat at short ranges. The four models have top-folding buttstocks, and were available with or without a forward handgrip ahead of the magazine housing. The largely steel Spectre has a polymer overmolded grip, magazine release and safety/selector levers.

<span class="mw-page-title-main">Jatimatic</span> Finnish submachine gun

The Jatimatic is a Finnish 9×19mm Parabellum submachine gun developed in the late 1970s and early 1980s by Jali Timari. The submachine gun made its debut in 1983. The Jatimatic was manufactured in very limited numbers initially by Tampereen Asepaja Oy of Tampere and later—Oy Golden Gun Ltd. The firearm was designed primarily for police, security forces and armored vehicle crews. It was never adopted into service by the Finnish Defence Forces, although the later GG-95 PDW version was tested by the FDF in the 1990s.

<span class="mw-page-title-main">Claridge Hi-Tec/Goncz Pistol</span> Semi-automatic pistol

The Claridge Hi-Tec and its antecedent the Goncz High-Tech Long Pistol are semi-automatic pistols designed by Hungarian inventor Lajos John Goncz. This unique firearm features a telescopic bolt design encased in a tubular upper receiver with a forged steel frame, button rifled match barrels, and 16-round magazines standard.

The following are terms related to firearms and ammunition topics.

The Demro TAC-1 is a semi-automatic carbine chambered in either .45 ACP or 9×19mm Parabellum. The TAC-1 is the reintroduction of the Fox Carbine to the law enforcement market after a fallout between Gerard J. Fox, the inventor, and Dean Machine Inc. of Manchester, CT. Although it is visually similar to the Thompson submachine gun the operation and design is quite different. The design is a closer cousin to the Soviet PPSh-41.

The BSA Experimental Model 1949 was a submachine gun of British origin intended to replace the Sten submachine gun. The weapon was fed from a 32-round box magazine inserted in the side and had an unusual twist-action bakelite-covered handguard.

<span class="mw-page-title-main">Safety (firearms)</span> Feature on firearms to prevent accidental discharge

In firearms, a safety or safety catch is a mechanism used to help prevent the accidental discharge of a firearm, helping to ensure safer handling.

The Parinco mod. 3R is a submachine gun of Spanish origin that was designed in 1959. It is a selective-fire weapon for short-range street and brush fighting. It remains reasonably accurate up to 100 m using sighted semi-automatic fire. For close range combat, 2- or 3-shot bursts are recommended.

The D-Max Industries 100 is a semi automatic carbine manufactured by D-Max Industries of Auburn, Washington. It could also be chambered in .45 ACP, .41AE, .40 S&W, .38 Super and 9x19mm Parabellum. The D-Max 100 existed in 2 variants, the D-Max 100C carbine and D-Max 100P pistol.

References

  1. "OF OERLIKONS AND OTHER THINGS". Archived from the original on August 31, 2018.
  2. Woodman, Harry (1989). Early aircraft armament; the aeroplane and the gun up to 1918. Smithsonian. pp. 176–177. ISBN   0853689903.
  3. "Synchronisation systems" (PDF). Archived from the original (PDF) on 2022-01-03.
  4. "Open Bolt Vs Closed Bolt Firearms". Abbey. July 14, 2017. Archived from the original on May 13, 2023. Retrieved May 13, 2023.
  5. "Archived copy" (PDF). Archived from the original (PDF) on 2013-02-27. Retrieved 2013-02-10.{{cite web}}: CS1 maint: archived copy as title (link)
  6. "1982-2 - KG-9 Pistol as NFA Weapon". ATF . ATF. January 19, 1982. Archived from the original on May 31, 2023. Retrieved May 31, 2023.
  7. "1982-8 - SM10, SM11A Pistols and SAC Carbines as NFA Weapons". ATF . ATF. June 21, 1982. Archived from the original on May 31, 2023. Retrieved May 31, 2023.
  8. "1983-5 - STEN MK II as NFA Weapon". ATF . ATF. Archived from the original on May 31, 2023. Retrieved May 31, 2023.
  9. "Gun Review: "Open Bolt" Explained - A Tale of Two Uzis -". The Firearm Blog. 2013-06-20. Archived from the original on December 1, 2022. Retrieved 2021-01-11.
  10. "Fox Carbine ATF Letter" (PDF). FoxCarbine.com. ATF. May 3, 1974. Archived from the original (PDF) on April 1, 2017. Retrieved May 31, 2023.