Oscillator sync

Last updated
The oscillator sync control on an ARP Odyssey analogue synthesiser Oscillator Sync 0186.jpg
The oscillator sync control on an ARP Odyssey analogue synthesiser

Oscillator sync is a feature in some synthesizers with two or more VCOs, DCOs, or "virtual" oscillators. As one oscillator finishes a cycle, it resets the period of another oscillator, forcing the latter to have the same base frequency. This can produce a harmonically rich sound, the timbre of which can be altered by varying the synced oscillator's frequency. A synced oscillator that resets other oscillator(s) is called the leader; the oscillators which it resets are called followers. There are two common forms of oscillator sync which appear on synthesizers: Hard Sync and Soft Sync. According to Sound on Sound journalist Gordon Reid, oscillator sync is "one of the least understood facilities on any synthesizer". [1]

Contents

Hard Sync

The leader oscillator's pitch is generated by user input (typically the synthesizer's keyboard), and is arbitrary. The follower oscillator's pitch may be tuned to (or detuned from) this frequency, or may remain constant. Every time the leader oscillator's cycle repeats, the follower is retriggered, regardless of its position. If the follower is tuned to a lower frequency than the leader it will be forced to repeat before it completes an entire cycle, and if it is tuned to a higher frequency it will be forced to repeat partway through a second or third cycle. This technique ensures that the oscillators are technically playing at the same frequency, but the irregular cycle of the follower oscillator often causes complex timbres and the impression of harmony. If the tuning of the follower oscillator is swept, one may discern a harmonic sequence. [2]

This effect may be achieved by measuring the zero axis crossings of the leader oscillator and retriggering the follower oscillator after every other crossing.

This form of oscillator sync is more common than soft sync, but is prone to generating aliasing in naive digital implementations.

Soft Sync

There are several other kinds of sync which may also be called Soft Sync. In a Hard Sync setup, the follower oscillator is forced to reset to some level and phase (for example, zero) with every cycle of the leader regardless of position or direction of the follower waveform, which often generates asymmetrical shapes.

In some cases, [3] [4] Soft Sync refers to a process intended to nudge and lock the follower oscillator into the same or an integer or fractional multiple of the leader oscillator frequency when they both have similar phases, similar to a phase-locked loop.

Reversing Sync

This form of oscillator sync is less common. This form is very similar to Hard Sync, with one small difference. In Reversing Soft Sync, rather than resetting to zero, the wave is inverted; that is, its direction is reversed. Reversing Soft Sync is more associated with analog triangle core oscillators than analog sawtooth core oscillators.

Threshold or Weak Sync

Several kinds of Soft Sync use comparison thresholds:

Soft Sync may accurately refer to any of these, depending on the synthesizer or manufacturer in question.

Phase Advance 'Sync'

The phase of the follower is advanced by some amount when the leader oscillator level crosses some threshold. Used for audio synthesis, this may give an audible effect similar to Soft Sync.

Reset Inhibit Sync

When the leader oscillator crosses some threshold, the normal reset of the follower is disabled: it will stick at its final level, positive or negative. When the leader crosses back over some threshold, the follower is reset.

Overlap Sync

In this method, the current wave completes but a new waveform is generated at the sync pulse. The tail of the old wave and the new wave are output summed if they overlap.

Digital Implementation Aspects

Naive approaches to sync in digital oscillators will result in aliasing. To prevent this, band-limited methods such as additive synthesis, BLIT (Band-Limited Impulse Train) [5] or BLEP (Band-Limited Step) must be adopted to avoid aliasing. [6]

In a digital oscillator, best practice is that the follower will not be reset to the identical phase each cycle, but to a phase advanced by an equivalent time to the phase of the leader at the reset. This prevents jitter in the follower frequency and provides truer synchronization.[ citation needed ]

For digital oscillators, Reversing Sync may less frequently generate aliasing.[ citation needed ] This effect may be naively implemented by measuring the zero axis crossings of the leader oscillator and reversing the slope of the follower oscillator after every other crossing.

For digital implementation, note that none of the Threshold or Weak Sync methods actually synthesize the waveform in a way different from Hard Sync (rather, they selectively deactivate it).

Overlap sync is primarily a digital technique with simple implementation, such as used in FOF; [7] an analog implementation could be a highly damped sine oscillator excited by the reset pulse.

Sync-based Architectures

A variety of synthesis architectures are based on sync, often used in conjunction with amplitude, frequency, or phase modulation. Such architectures include VOSIM and physical modelling synthesis.

Related Research Articles

<span class="mw-page-title-main">Frequency modulation synthesis</span> Form of sound synthesis

Frequency modulation synthesis is a form of sound synthesis whereby the frequency of a waveform is changed by modulating its frequency with a modulator. The (instantaneous) frequency of an oscillator is altered in accordance with the amplitude of a modulating signal.

<span class="mw-page-title-main">Sawtooth wave</span> Non-sinusoidal waveform

The sawtooth wave is a kind of non-sinusoidal waveform. It is so named based on its resemblance to the teeth of a plain-toothed saw with a zero rake angle. A single sawtooth, or an intermittently triggered sawtooth, is called a ramp waveform.

<span class="mw-page-title-main">Pulse-width modulation</span> Representation of a signal as a rectangular wave with varying duty cycle

Pulse-width modulation (PWM), also known as pulse-duration modulation (PDM) or pulse-length modulation (PLM), is any method of representing a signal as a rectangular wave with a varying duty cycle.

<span class="mw-page-title-main">Analog synthesizer</span> Synthesizer that uses analog circuits

An analog synthesizer is a synthesizer that uses analog circuits and analog signals to generate sound electronically.

Wavetable synthesis is a sound synthesis technique used to create quasi-periodic waveforms often used in the production of musical tones or notes.

<span class="mw-page-title-main">MOS Technology 6581</span> MOS Technology sound chip

The MOS Technology 6581/8580 SID is the built-in programmable sound generator chip of the Commodore CBM-II, Commodore 64, Commodore 128, and MAX Machine home computers.

A digitally controlled oscillator or DCO is used in synthesizers, microcontrollers, and software-defined radios. The name is analogous with "voltage-controlled oscillator". DCOs were designed to overcome the tuning stability limitations of early VCO designs.

<span class="mw-page-title-main">Ensoniq ESQ-1</span> Synthesizer

Ensoniq ESQ-1 is a 61-key, velocity sensitive, eight-note polyphonic and multitimbral synthesizer released by Ensoniq in 1985. It was marketed as a "digital wave synthesizer" but was an early Music Workstation. Although its voice generation is typically subtractive in much the same fashion as most analog synthesizers that preceded it, its oscillators are neither voltage nor "digitally controlled", but true digital oscillators, provided by a custom Ensoniq wavetable chip. The signal path includes analog resonant low-pass filters and an analog amplifier.

The Yamaha AN1x is a DSP-based analog modeling synthesizer, produced by Yamaha Corporation from 1997 to 1998, and was marketed as an "analog physical modelling control synthesizer".

Phase distortion (PD) synthesis is a synthesis method introduced in 1984 by Casio in its CZ range of synthesizers. In outline, it is similar to phase modulation synthesis as championed by Yamaha Corporation, in the sense that both methods dynamically change the harmonic content of a carrier waveform by influence of another waveform (modulator) in the time domain. However, the application and results of the two methods are quite distinct.

<span class="mw-page-title-main">Direct digital synthesis</span> Method for creating waveforms

Direct digital synthesis (DDS) is a method employed by frequency synthesizers used for creating arbitrary waveforms from a single, fixed-frequency reference clock. DDS is used in applications such as signal generation, local oscillators in communication systems, function generators, mixers, modulators, sound synthesizers and as part of a digital phase-locked loop.

<span class="mw-page-title-main">Korg OASYS</span> Workstation synthesizer

The Korg OASYS is a workstation synthesizer released in early 2005, 1 year after the successful Korg Triton Extreme. Unlike the Triton series, the OASYS uses a custom Linux operating system that was designed to be arbitrarily expandable via software updates, with its functionality limited only by the PC-like hardware.

microKORG Synthesizer released in 2002

The microKORG is a MIDI-capable digital synthesizer/vocoder from Korg featuring DSP-based analog modelling. The synthesizer is built in such a way that it is essentially a Korg MS-2000 with a programmable step arpeggiator, a less advanced vocoder, lack of motion sequencing, lack of an XLR microphone input, and in a smaller case with fewer real-time control knobs.

<span class="mw-page-title-main">Korg Wavestation</span> Synthesizer

The Korg Wavestation is a vector synthesis synthesizer first produced in the early 1990s and later re-released as a software synthesizer in 2004. Its primary innovation was Wave Sequencing, a method of multi-timbral sound generation in which different PCM waveform data are played successively, resulting in continuously evolving sounds. The Wavestation's "Advanced Vector Synthesis" sound architecture resembled early vector synths such as the Sequential Circuits Prophet VS.

<span class="mw-page-title-main">Korg DSS-1</span> Polyphonic synthesizer

The Korg DSS-1 is a polyphonic sampling synthesizer released by Korg in 1986. As Korg's initial entry into the sampling market, the DSS-1 combines sampling, additive synthesis, and waveform drawing with an analog signal path. The DSS-1 was released a time when major synthesizer manufacturers like Yamaha and Casio were beginning to explore sampling, an area of sound design dominated by companies like Fairlight, E-mu, and Ensoniq. Korg did not stay long in the sampling arena; the DSS-1 was the company's only sampler until 1998 when Korg introduced sampling options on their Triton and Trinity series of workstations.

<span class="mw-page-title-main">Synthesizer</span> Electronic musical instrument

A synthesizer is an electronic musical instrument that generates audio signals. Synthesizers typically create sounds by generating waveforms through methods including subtractive synthesis, additive synthesis and frequency modulation synthesis. These sounds may be altered by components such as filters, which cut or boost frequencies; envelopes, which control articulation, or how notes begin and end; and low-frequency oscillators, which modulate parameters such as pitch, volume, or filter characteristics affecting timbre. Synthesizers are typically played with keyboards or controlled by sequencers, software or other instruments, and may be synchronized to other equipment via MIDI.

A frequency synthesizer is an electronic circuit that generates a range of frequencies from a single reference frequency. Frequency synthesizers are used in devices such as radio receivers, televisions, mobile telephones, radiotelephones, walkie-talkies, CB radios, cable television converter boxes, satellite receivers, and GPS systems. A frequency synthesizer may use the techniques of frequency multiplication, frequency division, direct digital synthesis, frequency mixing, and phase-locked loops to generate its frequencies. The stability and accuracy of the frequency synthesizer's output are related to the stability and accuracy of its reference frequency input. Consequently, synthesizers use stable and accurate reference frequencies, such as those provided by a crystal oscillator.

<span class="mw-page-title-main">Evolver (synthesizer)</span> Hybrid analog-digital synthesizer

The Evolver is an analog-digital hybrid synthesizer designed by Dave Smith and manufactured by Dave Smith Instruments. It was first released as a desktop version in 2002, then later a 37-key keyboard bearing the same synth engine as the Evolver desktop was also released. A polyphonic version of the Evolver, dubbed the Poly Evolver, was released in 2004 as a rackmount version, then a 61-key keyboard version of the Poly Evolver was released in 2005. The Evolvers were replaced by new high end models, the Prophet 12 and the Pro 2.

<span class="mw-page-title-main">Akai AX80</span> Analogue synthesizer

The AX80 is a polyphonic analogue keyboard synthesizer manufactured by Akai Professional in 1984. It was Akai's first venture into the professional electronic musical instrument market. The AX80 used digitally controlled oscillators (DCO) and filter circuitry based on the Curtis Electronics CEM 3372 integrated circuit. It was marketed as part of a line of project studio equipment called the Akai Music Studio System, which included the S612 digital sampler the MR16 drum machine, the MS08 sequencer, and the MG1212 multitrack tape recorder.

The OPL series are a family of sound chips developed by Yamaha. The OPL series are low-cost sound chips providing FM synthesis for use in computing, music and video game applications.

References