Overdiagnosis is the diagnosis of disease that will never cause symptoms or death during a patient's ordinarily expected lifetime [1] and thus presents no practical threat regardless of being pathologic. Overdiagnosis is a side effect of screening for early forms of disease. Although screening saves lives in some cases, in others it may turn people into patients unnecessarily and may lead to treatments that do no good and perhaps do harm. Given the tremendous variability that is normal in biology, it is inherent that the more one screens, the more incidental findings will generally be found. For a large percentage of them, the most appropriate medical response is to recognize them as something that does not require intervention; but determining which action a particular finding warrants ("ignoring", watchful waiting, or intervention) can be very difficult, whether because the differential diagnosis is uncertain or because the risk ratio is uncertain (risks posed by intervention, namely, adverse events, versus risks posed by not intervening).
Overdiagnosis occurs when a disease is diagnosed correctly, but the diagnosis is irrelevant. A correct diagnosis may be irrelevant because treatment for the disease is not available, not needed, or not wanted. Some people contend that the term "overdiagnosis" is inappropriate, and that "overtreatment" is more representative of the phenomenon.
Because most people who are diagnosed are also treated, it is difficult to assess whether overdiagnosis has occurred in an individual. Overdiagnosis in an individual cannot be determined during life.[ citation needed ] Overdiagnosis is only certain when an individual remains untreated, never develops symptoms of the disease and dies of something else. The distinction of "died with disease" versus "died of disease" is then important and relevant. Thus most of the inferences about overdiagnosis comes from the study of populations. Rapidly rising rates of testing and disease diagnosis in the setting of stable rates of the feared outcome of the disease (e.g. death) are highly suggestive of overdiagnosis. Most compelling, however, is evidence from a randomized trial of a screening test intended to detect pre-clinical disease. A persistent excess of detected disease in the tested group years after the trial is completed constitutes the best evidence that overdiagnosis has occurred.[ citation needed ]
Although overdiagnosis is potentially applicable to the diagnosis of any disease, the concept was first recognized and studied in cancer screening—the systematic evaluation of asymptomatic patients to detect early forms of cancer. [2] The central harm of cancer screening is overdiagnosis—the detection of abnormalities that meet the pathologic definition of cancer (under the microscope) but will never progress to cause symptoms or death during a patient's ordinarily expected lifetime.
In advanced age, such as 65 years or older, the concept of overdiagnosis takes on increasing importance as life expectancy decreases. There are various cancer types for which a standard contraindication to screening is life expectancy of less than 10 years, for the simple and logical reason that a person who already has medically complex health status (e.g., multiple comorbidities) and realistically can probably expect to live for less than 10 years is less likely to get a net benefit (balance of benefit versus harms) from diagnosing and treating that cancer, especially if it may be indolent anyway. Prostate cancer is a classic example, but the concept can apply to breast cancer and other types as well.
Cancer screening is the effort to detect cancer early, during its pre-clinical phase—the time period that begins with an abnormal cell and ends when the patient notices symptoms from the cancer. It has long been known that some people have cancers with short pre-clinical phases (fast-growing, aggressive cancers), while others have cancers with long pre-clinical phases (slow-growing cancers). And this heterogeneity has an unfortunate implication: namely, screening tends to disproportionately detect slow-growing cancers (because they are accessible to be detected for a long period of time) and disproportionately miss the fast-growing cancers (because they are only accessible to be detected for a short period of time)—the very cancers we would most like to catch. For more information, see Screening (medicine)#Length time bias.
This long-standing model has a hidden assumption: namely, that all cancers inevitably progress. But some pre-clinical cancers will not progress to cause problems for patients. And if screening (or testing for some other reason) detects these cancers, overdiagnosis has occurred.
The figure below depicts the heterogeneity of cancer progression using 4 arrows to represent 4 categories of cancer progression.
The arrow labeled "Fast" represents a fast-growing cancer, one that quickly leads to symptoms and to death. These are the worst forms of cancer and unfortunately often appear in the interval between screening tests. The arrow labeled "Slow" represents a slow-growing cancer, one that leads to symptoms and death but only after many years. These are the cancers for which screening has arguably the greatest beneficial impact.
The arrow labeled "Very Slow" represents a cancer that never causes problems because it is growing very slowly. If a cancer grows slowly enough, then patients will die of some other cause before the cancer gets big enough to produce symptoms.
The arrow labeled "Non-progressive" represents a cancer that never causes problems because it is not growing at all. In other words, there are cellular abnormalities that meet the pathologic definition of cancer but never grow to cause symptoms—alternatively, they may grow and then regress. Although the concept of non-progressive cancers may seem implausible, basic scientists have begun to uncover biologic mechanisms that halt the progression of cancer. [3] [4] [5] Some cancers outgrow their blood supply (and are starved), others are recognized by the host's immune system (and are successfully contained), and some are not that aggressive in the first place.
Cancer that grows too slowly to be likely to harm the patient is usually referred to as a benign tumor. Although some types of benign tumor may require intervention, they are often simply monitored for malignant transformation. [6] [7]
The phenomenon of overdiagnosis is most widely understood in prostate cancer. [8] A dramatic increase in the number of new cases of prostate cancer was observed following the introduction of the PSA (prostate specific antigen) screening test. Because of the problem of overdiagnosis, most organizations recommend against prostate cancer screening in men with limited life expectancy—generally defined as less than 10 years (see also prostate cancer screening).
Overdiagnosis has been identified in mammographic screening for breast cancer. [9] [10] Long-term follow-up of the Malmo randomized trial of mammography found a persistent excess of 115 breast cancers in the screened group 15 years after the trial was completed (a 10% rate of overdiagnosis). [11] In a letter to the editor, authors not associated with the original study of the data from the randomized clinical trial argued that one-quarter of mammographically detected breast cancers represent overdiagnosis. [12] A systematic review of mammography screening programs reported an overdiagnosis rate of around 50%, which is the same of saying that a third of diagnosed cases of breast cancer are overdiagnosed. [13]
Overdiagnosis has also been identified in chest x-ray screening for lung cancer. [14] Long-term follow-up of the Mayo Clinic randomized trial of screening with chest x-rays and sputum cytology found a persistent excess of 46 lung cancer cases in the screened group 13 years after the trial was completed, [15] suggesting that 20–40% of lung cancers detected by conventional x-ray screening represent overdiagnosis. There is considerable evidence that the problem of overdiagnosis is much greater for lung cancer screening using spiral-CT scans. [16]
Overdiagnosis has also been associated with early detection in a variety of other cancers, including neuroblastoma, [17] [18] melanoma, [19] and thyroid cancer. [20] In fact, some degree of overdiagnosis in cancer early detection is probably the rule, not the exception.[ citation needed ]
Issues with overdiagnosis of infectious diseases, such as malaria or typhoid fever, persist in many regions around the world. For example, malaria overdiagnosis is well-documented in African countries. [21] [22] and results in over-inflation of actual malaria rates reported at the local and national levels. [23] Health facilities tend to over-diagnose malaria in patients presenting with symptoms such as fever, due to traditional perceptions (for example any fever being equivalent to malaria) and issues related to laboratory testing (see Diagnosis of malaria). [24] [25] Therefore, malaria overdiagnosis leads to under-management of other fever-inducing conditions, [22] but also to over-prescription of antimalarial drugs. [26]
Overdiagnosed patients cannot benefit from the detection and treatment of their "cancer" because the cancer was never destined to cause symptoms or death. They can only be harmed. There are three categories of harm associated with overdiagnosis:
While many identify false positive results as the major downside to cancer screening, there are data to suggest that—when patients are informed about overdiagnosis—they are much more concerned about overdiagnosis than false positive results. [27]
Overdiagnosis is often confused with the term "false positive" test results and with misdiagnosis, but they are three distinct concepts. [28] A false positive test result refers to a test that suggests the presence of disease, but is ultimately proved to be in error (usually by a second, more precise test). Patients with false positive test results may be told that they have a disease and erroneously treated; overdiagnosed patients are told they have disease and generally receive treatment. Misdiagnosed patients do not have the condition at all, or have a totally different condition, but are treated anyway.
Overdiagnosis is also distinct from overtesting. Overtesting is the phenomenon where patients receive a medical test that they don't need; it will not benefit them. [29] For instance, a patient that receives a lumbar spine x-ray when they have low back pain without any sinister signs or symptoms (weight loss, fever, lower limb paresthesia, etc.) and symptoms have been present for less than 4 weeks. Most tests are subject to overtesting, but echocardiograms (ultrasounds of the heart) have been shown to be particularly prone to overtesting. [29] The detection of overtesting is difficult; recently, many population-level estimates have emerged to try to detect potential overtesting. The most common of these estimates is geographical variation in test use. These estimates detect regions, hospitals or general practices that order many more tests, compared to their peers, irrespective of differences in patient demographics between regions. [30] [31] Further methods that have been used include identifying general practices that order a higher proportion of tests that return a normal result, [30] and the identification of tests with large temporal increases in their use, without a justifiable reason. [32]
Overdiagnosis | False Positive Results | Misdiagnosis | |
---|---|---|---|
Definition | Detection of a "disease" that will never cause symptoms or death during a patient's lifetime | A "false alarm"—an initial test result that suggests the presence of disease, but later proved false (no disease is present) | Diagnosis of a disease that the patient does not in fact have (either they are "normal" or they have a different condition) |
Patient experience | Told they have the disease | Told that the test was wrong and they do not have the disease (usually after being first told they have the disease or at least may have it) | Told they have the disease |
Physician action | Generally, initiates treatment | Reassurance | Generally, initiates treatment |
Potential Harms |
|
|
|
The concept of undiagnosing is a strategy to review diagnostic labels and remove those that are unnecessary or no longer beneficial. It is important that the medical record is updated to reflect the removal of the diagnosis. [33]
It has been proposed that some conditions that are indolent (i.e., unlikely to cause appreciable harm during the patient's lifetime) should have the words "cancer" or "carcinoma" removed from their accepted/preferred medical name. [34] Such a proposal is to name conditions as indolent lesions of epithelial origin or IDLE. [34]
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal bleeding, prolonged cough, unexplained weight loss, and a change in bowel movements. While these symptoms may indicate cancer, they can also have other causes. Over 100 types of cancers affect humans.
Mammography is the process of using low-energy X-rays to examine the human breast for diagnosis and screening. The goal of mammography is the early detection of breast cancer, typically through detection of characteristic masses or microcalcifications.
In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally consists of a series of questions about the patient's medical history followed by an examination based on the reported symptoms. Together, the medical history and the physical examination help to determine a diagnosis and devise the treatment plan. These data then become part of the medical record.
Screening, in medicine, is a strategy used to look for as-yet-unrecognised conditions or risk markers. This testing can be applied to individuals or to a whole population without symptoms or signs of the disease being screened.
Canine cancer detection is an approach to cancer screening that relies upon the claimed olfactory ability of dogs to detect, in urine or in breath, very low concentrations of the alkanes and aromatic compounds generated by malignant tumors. While some research has been promising, no verified studies by secondary research groups have substantiated the validity of positive, conclusive results.
The five-year survival rate is a type of survival rate for estimating the prognosis of a particular disease, normally calculated from the point of diagnosis. Lead time bias from earlier diagnosis can affect interpretation of the five-year survival rate.
Ductal carcinoma in situ (DCIS), also known as intraductal carcinoma, is a pre-cancerous or non-invasive cancerous lesion of the breast. DCIS is classified as Stage 0. It rarely produces symptoms or a breast lump one can feel, typically being detected through screening mammography. It has been diagnosed in a significant percentage of men.
Breast cancer screening is the medical screening of asymptomatic, apparently healthy women for breast cancer in an attempt to achieve an earlier diagnosis. The assumption is that early detection will improve outcomes. A number of screening tests have been employed, including clinical and self breast exams, mammography, genetic screening, ultrasound, and magnetic resonance imaging.
The epidemiology of cancer is the study of the factors affecting cancer, as a way to infer possible trends and causes. The study of cancer epidemiology uses epidemiological methods to find the cause of cancer and to identify and develop improved treatments.
Thyroid cancer is cancer that develops from the tissues of the thyroid gland. It is a disease in which cells grow abnormally and have the potential to spread to other parts of the body. Symptoms can include swelling or a lump in the neck. Cancer can also occur in the thyroid after spread from other locations, in which case it is not classified as thyroid cancer.
The objective of cancer screening is to detect cancer before symptoms appear, involving various methods such as blood tests, urine tests, DNA tests, and medical imaging. The purpose of screening is early cancer detection, to make the cancer easier to treat and extending life expectancy. As of 2023, cancer is the second leading cause of death in the United States.
The PICO process is a mnemonic used in evidence-based practice to frame and answer a clinical or health care related question, though it is also argued that PICO "can be used universally for every scientific endeavour in any discipline with all study designs". The PICO framework is also used to develop literature search strategies, for instance in systematic reviews.
The mainstay of malaria diagnosis has been the microscopic examination of blood, utilizing blood films. Although blood is the sample most frequently used to make a diagnosis, both saliva and urine have been investigated as alternative, less invasive specimens. More recently, modern techniques utilizing antigen tests or polymerase chain reaction have been discovered, though these are not widely implemented in malaria endemic regions. Areas that cannot afford laboratory diagnostic tests often use only a history of subjective fever as the indication to treat for malaria.
Dynamic angiothermography (DATG) is a technique for the diagnosis of breast cancer. This technique, though springing from the previous conception of thermography, is based on a completely different principle. DATG records the temperature variations linked to the vascular changes in the breast due to angiogenesis. The presence, change, and growth of tumors and lesions in breast tissue change the vascular network in the breast. Consequently, through measuring the vascular structure over time, DATG effectively monitors the change in breast tissue due to tumors and lesions. It is currently used in combination with other techniques for diagnosis of breast cancer. This diagnostic method is a low-cost one compared with other techniques.
Overscreening, also called unnecessary screening, is the performance of medical screening without a medical indication to do so. Screening is a medical test in a healthy person who is showing no symptoms of a disease and is intended to detect a disease so that a person may prepare to respond to it. Screening is indicated in people who have some threshold risk for getting a disease, but is not indicated in people who are unlikely to develop a disease. Overscreening is a type of unnecessary health care.
H. Gilbert Welch is an American academic physician and cancer researcher. He was an internist at the Veterans Administration Medical Center in White River Junction, Vermont, as well as a professor of medicine at the Dartmouth Institute for Health Policy and Clinical Practice. In September 2018, Welch resigned from Dartmouth College after a 20-month long research misconduct investigation at Dartmouth concluded he had committed plagiarism.
The Canadian National Breast Screening Study, sometimes abbreviated as CNBSS or NBSS, was a randomized trial conducted with the aim of evaluating whether mammography reduced breast cancer incidence or mortality among women who underwent screening. The trial was initiated in 1980, and was conducted in fifteen screening centers in six different Canadian provinces. It was the first study designed to determine whether mammography was effective among women between the ages of 40 and 49.
In medicine, breast imaging is a sub-speciality of diagnostic radiology that involves imaging of the breasts for screening or diagnostic purposes. There are various methods of breast imaging using a variety of technologies as described in detail below. Traditional screening and diagnostic mammography uses x-ray technology and has been the mainstay of breast imaging for many decades. Breast tomosynthesis is a relatively new digital x-ray mammography technique that produces multiple image slices of the breast similar to, but distinct from, computed tomography (CT). Xeromammography and galactography are somewhat outdated technologies that also use x-ray technology and are now used infrequently in the detection of breast cancer. Breast ultrasound is another technology employed in diagnosis and screening that can help differentiate between fluid filled and solid lesions, an important factor to determine if a lesion may be cancerous. Breast MRI is a technology typically reserved for high-risk patients and patients recently diagnosed with breast cancer. Lastly, scintimammography is used in a subgroup of patients who have abnormal mammograms or whose screening is not reliable on the basis of using traditional mammography or ultrasound.
Jill Wruble is a radiologist and fellow at Johns Hopkins Medicine who is best known as a speaker on overdiagnosis due to incidental imaging finding in United States medicine.
Dense breast tissue, also known as dense breasts, is a condition of the breasts where a higher proportion of the breasts are made up of glandular tissue and fibrous tissue than fatty tissue. Around 40–50% of women have dense breast tissue and one of the main medical components of the condition is that mammograms are unable to differentiate tumorous tissue from the surrounding dense tissue. This increases the risk of late diagnosis of breast cancer in women with dense breast tissue. Additionally, women with such tissue have a higher likelihood of developing breast cancer in general, though the reasons for this are poorly understood.