Oxime V

Last updated
Oxime V
Oxime V structure.svg
Names
IUPAC name
4-(Methoxymethyl)-1,4-cyclohexadiene-1-carboxaldehyde syn-oxime
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/C9H13NO2/c1-12-7-9-4-2-8(3-5-9)6-10-11/h2,5-6,11H,3-4,7H2,1H3/b10-6+
    Key: LNTHQBNSXNQPPZ-UXBLZVDNSA-N
  • C(=N/O)\C=1CC=C(COC)CC1
Properties
C9H13NO2
Molar mass 167.208 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Oxime V is a chemical compound that has been studied as a potential sweetener. Oxime V was first reported in 1976 as a synthetic analog of the artificial sweetener perillartine. [1] It is about 450 times as sweet as sucrose and is more water-soluble than perillartine. [2] Its metabolism and toxicology have been investigated, [3] and it has been found to have promising properties, [2] but it is not currently marketed.

In 2022, oxime V was identified in citrus. [4] [5]

Related Research Articles

<span class="mw-page-title-main">Aspartame</span> Artificial non-saccharide sweetener

Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose, and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with the trade names NutraSweet, Equal, and Canderel. First submitted for approval as a food ingredient in 1974, aspartame was approved by the United States Food and Drug Administration (FDA) in 1981.

<span class="mw-page-title-main">Flavoring</span> Food additives, used to change its aroma or taste.

A flavoring, also known as flavor or flavorant, is a food additive used to improve the taste or smell of food. It changes the perceptual impression of food as determined primarily by the chemoreceptors of the gustatory and olfactory system. Along with additives, other components like sugars determine the taste of food.

<span class="mw-page-title-main">Toxin</span> Naturally occurring organic poison

A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849–1919) and is derived from the word toxic.

<span class="mw-page-title-main">Pharmacology</span> Branch of biology concerning drugs

Pharmacology is a branch of medicine, biology and pharmaceutical sciences concerned with drug or medication action, where a drug may be defined as any artificial, natural, or endogenous molecule which exerts a biochemical or physiological effect on the cell, tissue, organ, or organism. More specifically, it is the study of the interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function. If substances have medicinal properties, they are considered pharmaceuticals.

<span class="mw-page-title-main">Sucralose</span> Chemical compound

Sucralose is an artificial sweetener and sugar substitute. The majority of ingested sucralose is not broken down by the body, so it is noncaloric. In the European Union, it is also known under the E number E955. It is produced by chlorination of sucrose, selectively replacing three of the hydroxy groups in the C1, C4, and C6 positions to give a 1,6-dichloro-1,6-dideoxyfructose–4-chloro-4-deoxygalactose disaccharide. Sucralose is about 320 to 1,000 times sweeter than sucrose, three times as sweet as both aspartame and acesulfame potassium, and twice as sweet as sodium saccharin. Evidence of benefit is lacking for long-term weight loss, with some data supporting weight gain and heart disease risks.

<span class="mw-page-title-main">Splenda</span> Brand of sugar substitute

Splenda is a global brand of sugar substitutes and reduced-calorie food products. While the company is known for its original formulation containing sucralose, it also manufactures items using natural sweeteners such as stevia, monk fruit and allulose. It is owned by the American company Heartland Food Products Group. The high-intensity sweetener ingredient sucralose used in Splenda Original is manufactured by the British company Tate & Lyle.

<span class="mw-page-title-main">Sugar substitute</span> Sugarless food additive intended to provide a sweet taste

A sugar substitute is a food additive that provides a sweet taste like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders, and packets.

<span class="mw-page-title-main">Oxime</span> Class of chemical compounds

An oxime is a organic compound belonging to the imines, with the general formula RR'C=NOH, where R is an organic side-chain and R' may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides with general structure R1C(=NOH)NR2R3.

<span class="mw-page-title-main">Neohesperidin dihydrochalcone</span> Chemical compound

Neohesperidin dihydrochalcone, sometimes abbreviated to neohesperidin DC or simply NHDC, is an artificial sweetener derived from citrus.

<span class="mw-page-title-main">Saccharin</span> Chemical compound

Saccharin is an artificial sweetener with effectively no nutritional value. It is about 550 times as sweet as sucrose but has a bitter or metallic aftertaste, especially at high concentrations. Saccharin is used to sweeten products such as drinks, candies, cookies, and especially for masking bitter taste of some medicines.

<span class="mw-page-title-main">Acesulfame potassium</span> Calorie-free sugar substitute

Acesulfame potassium, also known as acesulfame K or Ace K, is a synthetic calorie-free sugar substitute often marketed under the trade names Sunett and Sweet One. In the European Union, it is known under the E number E950. It was discovered accidentally in 1967 by German chemist Karl Clauss at Hoechst AG. In chemical structure, acesulfame potassium is the potassium salt of 6-methyl-1,2,3-oxathiazine-4(3H)-one 2,2-dioxide. It is a white crystalline powder with molecular formula C
4
H
4
KNO
4
S
and a molecular weight of 201.24 g/mol.

<span class="mw-page-title-main">Chlorfenvinphos</span> Chemical compound

Chlorfenvinphos is the common name of an organophosphorus compound that was widely used as an insecticide and an acaricide. The molecule itself can be described as an enol ester derived from dichloroacetophenone and diethylphosphonic acid. Chlorfenvinphos has been included in many products since its first use in 1963. However, because of its toxic effect as a cholinesterase inhibitor it has been banned in several countries, including the United States and the European Union. Its use in the United States was cancelled in 1991.

<span class="mw-page-title-main">Dulcin</span> Chemical compound

Dulcin is an artificial sweetener about 250 times sweeter than sugar, discovered in 1883 by the Polish chemist Józef (Joseph) Berlinerblau. It was first mass-produced about seven years later. Although it was discovered only five years after saccharin, it never enjoyed the latter compound's market success. Nevertheless, it was an important sweetener of the early 20th century and had an advantage over saccharin in that it did not possess a bitter aftertaste.

<span class="mw-page-title-main">Sweetness</span> Basic taste

Sweetness is a basic taste most commonly perceived when eating foods rich in sugars. Sweet tastes are generally regarded as pleasurable. In addition to sugars like sucrose, many other chemical compounds are sweet, including aldehydes, ketones, and sugar alcohols. Some are sweet at very low concentrations, allowing their use as non-caloric sugar substitutes. Such non-sugar sweeteners include saccharin and aspartame. Other compounds, such as miraculin, may alter perception of sweetness itself.

<span class="mw-page-title-main">Psicose</span> Chemical compound

D-Psicose (C6H12O6), also known as D-allulose, or simply allulose, is a low-calorie epimer of the monosaccharide sugar fructose, used by some major commercial food and beverage manufacturers as a low-calorie sweetener. First identified in wheat in the 1940s, allulose is naturally present in small quantities in certain foods.

<span class="mw-page-title-main">Perillaldehyde</span> Chemical compound

Perillaldehyde, perillic aldehyde or perilla aldehyde, is a natural organic compound found most abundantly in the annual herb perilla, but also in a wide variety of other plants and essential oils. It is a monoterpenoid containing an aldehyde functional group.

The artificial sweetener aspartame has been the subject of several controversies since its initial approval by the U.S. Food and Drug Administration (FDA) in 1974. The FDA approval of aspartame was highly contested, beginning with suspicions of its involvement in brain cancer, alleging that the quality of the initial research supporting its safety was inadequate and flawed, and that conflicts of interest marred the 1981 approval of aspartame, previously evaluated by two FDA panels that concluded to keep the approval on hold before further investigation. In 1987, the U.S. Government Accountability Office concluded that the food additive approval process had been followed properly for aspartame. The irregularities fueled a conspiracy theory, which the "Nancy Markle" email hoax circulated, along with claims—counter to the weight of medical evidence—that numerous health conditions are caused by the consumption of aspartame in normal doses.

<span class="mw-page-title-main">Steviol glycoside</span>

Steviol glycosides are the chemical compounds responsible for the sweet taste of the leaves of the South American plant Stevia rebaudiana (Asteraceae) and the main ingredients of many sweeteners marketed under the generic name stevia and several trade names. They also occur in the related species S. phlebophylla and in the plant Rubus chingii (Rosaceae).

Gymnemic acids are a class of chemical compounds isolated from the leaves of Gymnema sylvestre (Asclepiadaceae). They are anti-sweet compounds, or sweetness inhibitors. After chewing the leaves, solutions sweetened with sugar taste like water.

<span class="mw-page-title-main">Taste</span> Sense of chemicals on the tongue

The gustatory system or sense of taste is the sensory system that is partially responsible for the perception of taste (flavor). Taste is the perception produced or stimulated when a substance in the mouth reacts chemically with taste receptor cells located on taste buds in the oral cavity, mostly on the tongue. Taste, along with olfaction and trigeminal nerve stimulation, determines flavors of food and other substances. Humans have taste receptors on taste buds and other areas, including the upper surface of the tongue and the epiglottis. The gustatory cortex is responsible for the perception of taste.

References

  1. Acton, E. M.; Stone, H. (1976). "Potential New Artificial Sweetener from Study of Structure-Taste Relationships". Science. 193 (4253): 584–586. Bibcode:1976Sci...193..584A. doi:10.1126/science.959816. PMID   959816.
  2. 1 2 A. Douglas Kinghorn and Cesar M. Comadre (2001). "Chapter 12. Less Common High-Potency Sweeteners". In Lyn O'Brien-Nabors (ed.). Alternative Sweeteners (3rd ed.). p. 222. ISBN   0-8247-0437-1.
  3. Hitoma, C.; Acton, E. M.; Degraw, J. I.; Thomas, D. W. (1985). "Metabolic and Toxicologic Study of an Artificial Sweetener, Oxime V". Drug and Chemical Toxicology. 8 (4): 195–206. doi:10.3109/01480548509038645. PMID   3841048.
  4. Wang, Zhixin; Gmitter, Frederick G.; Grosser, Jude W.; Wang, Yu (2022). "Natural Sweeteners and Sweetness-Enhancing Compounds Identified in Citrus Using an Efficient Metabolomics-Based Screening Strategy". Journal of Agricultural and Food Chemistry. 70 (34): 10593–10603. doi:10.1021/acs.jafc.2c03515. PMID   35980814. S2CID   251645690.
  5. "Researchers find new sugar substitutes in citrus that could change food and beverage industry". Science Daily. September 20, 2022.