Oxygen evolution

Last updated

Oxygen evolution is the chemical process of generating elemental diatomic oxygen (O2) by a chemical reaction, usually from water, the most abundant oxide compound in the universe. Oxygen evolution on Earth is effected by biotic oxygenic photosynthesis, photodissociation, hydroelectrolysis, and thermal decomposition of various oxides and oxyacids. When relatively pure oxygen is required industrially, it is isolated by distilling liquefied air. [1]

Contents

Natural oxygen evolution is essential to the biological process of all complex life on Earth, as aerobic respiration has become the most important biochemical process of eukaryotic thermodynamics since eukaryotes evolved through symbiogenesis during the Proterozoic eon, and such consumption can only continue if oxygen is cyclically replenished by photosynthesis. The various oxygenation events during Earth's history had not only influenced changes in Earth's biosphere, but also significantly altered the atmospheric chemistry. The transition of Earth's atmosphere from an anoxic prebiotic reducing atmosphere high in methane and hydrogen sulfide to an oxidative atmosphere of which free nitrogen and oxygen make up 99% of the mole fractions, had led to major climate changes and caused numerous icehouse phenomena and global glaciations.

In industries, oxygen evolution reaction (OER) is a limiting factor in the process of generating molecular oxygen through chemical reactions such as water splitting and electrolysis, and improved OER electrocatalysis is the key to the advancement of a number of renewable energy technologies such as solar fuels, regenerative fuel cells and metal–air batteries.

Oxygen evolution in nature

Photosynthetic oxygen evolution is the fundamental process by which oxygen is generated in the earth's biosphere. The reaction is part of the light-dependent reactions of photosynthesis in cyanobacteria and the chloroplasts of green algae and plants. It utilizes the energy of light to split a water molecule into its protons and electrons for photosynthesis. Free oxygen, generated as a by-product of this reaction, is released into the atmosphere. [2] [3]

Water oxidation is catalyzed by a manganese-containing cofactor contained in photosystem II, known as the oxygen-evolving complex (OEC) or the water-splitting complex. Manganese is an important cofactor, and calcium and chloride are also required for the reaction to occur. [4] The stoichiometry of this reaction is as follows:

2H2O ⟶ 4e + 4H+ + O2

The protons are released into the thylakoid lumen, thus contributing to the generation of a proton gradient across the thylakoid membrane. This proton gradient is the driving force for adenosine triphosphate (ATP) synthesis via photophosphorylation and the coupling of the absorption of light energy and the oxidation of water for the creation of chemical energy during photosynthesis. [5]

History of discovery

It was not until the end of the 18th century that Joseph Priestley accidentally discovered the ability of plants to "restore" air that had been "injured" by the burning of a candle. He followed up on the experiment by showing that air "restored" by vegetation was "not at all inconvenient to a mouse." He was later awarded a medal for his discoveries that "...no vegetable grows in vain... but cleanses and purifies our atmosphere." Priestley's experiments were further evaluated by Jan Ingenhousz, a Dutch physician, who then showed that the "restoration" of air only worked while in the presence of light and green plant parts. [4]

Water electrolysis

Together with hydrogen (H2), oxygen is evolved by the electrolysis of water. The point of water electrolysis is to store energy in the form of hydrogen gas, a clean-burning fuel. The "oxygen evolution reaction (OER) is the major bottleneck [to water electrolysis] due to the sluggish kinetics of this four-electron transfer reaction." [6] All practical catalysts are heterogeneous.

Diagram showing the overall chemical equation. Electrolysis of Water.png
Diagram showing the overall chemical equation.

Electrons (e) are transferred from the cathode to protons to form hydrogen gas. The half reaction, balanced with acid, is:

2 H+ + 2e → H2

At the positively charged anode, an oxidation reaction occurs, generating oxygen gas and releasing electrons to the anode to complete the circuit:

2 H2O → O2 + 4 H+ + 4e

Combining either half reaction pair yields the same overall decomposition of water into oxygen and hydrogen:

Overall reaction:
2 H2O → 2 H2 + O2

Chemical oxygen generation

Although some metal oxides eventually release O2 when heated, these conversions generally require high temperatures. A few compounds release O2 at mild temperatures. Chemical oxygen generators consist of chemical compounds that release O2 when stimulated, usually by heat. They are used in submarines and commercial aircraft to provide emergency oxygen. Oxygen is generated by the high-temperature decomposition of sodium chlorate: [1]

2 NaClO3 → 2 NaCl + 3 O2

Potassium permanganate also releases oxygen upon heating, but the yield is modest.

2 KMnO4 → MnO2 + K2MnO4 + O2

See also

Related Research Articles

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The oxidation and reduction processes occur simultaneously in the chemical reaction.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient.

<span class="mw-page-title-main">Thylakoid</span> Membrane enclosed compartments in chloroplasts and cyanobacteria

Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana. Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment.

<span class="mw-page-title-main">Chemiosmosis</span> Electrochemical principle that enables cellular respiration

Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H+) across a membrane during cellular respiration or photosynthesis.

<span class="mw-page-title-main">Photosystem</span> Structural units of protein involved in photosynthesis

Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.

<span class="mw-page-title-main">Photosystem II</span> First protein complex in light-dependent reactions of oxygenic photosynthesis

Photosystem II is the first protein complex in the light-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria. Within the photosystem, enzymes capture photons of light to energize electrons that are then transferred through a variety of coenzymes and cofactors to reduce plastoquinone to plastoquinol. The energized electrons are replaced by oxidizing water to form hydrogen ions and molecular oxygen.

<span class="mw-page-title-main">Photophosphorylation</span> Biochemical process in photosynthesis

In the process of photosynthesis, the phosphorylation of ADP to form ATP using the energy of sunlight is called photophosphorylation. Cyclic photophosphorylation occurs in both aerobic and anaerobic conditions, driven by the main primary source of energy available to living organisms, which is sunlight. All organisms produce a phosphate compound, ATP, which is the universal energy currency of life. In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic phosphate. ATP is essential in the Calvin cycle to assist in the synthesis of carbohydrates from carbon dioxide and NADPH.

Artificial photosynthesis is a chemical process that biomimics the natural process of photosynthesis. The term artificial photosynthesis is used loosely, referring to any scheme for capturing and then storing energy from sunlight by producing a fuel, specifically a solar fuel. An advantage of artificial photosynthesis would be that the solar energy could converted and stored. By contrast, using photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary losses of energy associated with the second conversion. The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, but it has never been demonstrated in any practical sense. The economics of artificial photosynthesis are noncompetitive.

<span class="mw-page-title-main">Water splitting</span> Chemical reaction

Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen:

<span class="mw-page-title-main">Oxygen-evolving complex</span>

The oxygen-evolving complex (OEC), also known as the water-splitting complex, is a water-oxidizing enzyme involved in the photo-oxidation of water during the light reactions of photosynthesis. OEC is surrounded by 4 core proteins of photosystem II at the membrane-lumen interface. The mechanism for splitting water involves absorption of three photons before the fourth provides sufficient energy for water oxidation. Based on a widely accepted theory from 1970 by Kok, the complex can exist in 5 states, denoted S0 to S4, with S0 the most reduced and S4 the most oxidized. Photons trapped by photosystem II move the system from state S0 to S1 to S2 to S3 and finally to S4. S4 reacts with water producing free oxygen:

Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.

<span class="mw-page-title-main">Photosynthetic reaction centre</span> Molecular unit responsible for absorbing light in photosynthesis

A photosynthetic reaction center is a complex of several proteins, biological pigments, and other co-factors that together execute the primary energy conversion reactions of photosynthesis. Molecular excitations, either originating directly from sunlight or transferred as excitation energy via light-harvesting antenna systems, give rise to electron transfer reactions along the path of a series of protein-bound co-factors. These co-factors are light-absorbing molecules (also named chromophores or pigments) such as chlorophyll and pheophytin, as well as quinones. The energy of the photon is used to excite an electron of a pigment. The free energy created is then used, via a chain of nearby electron acceptors, for a transfer of hydrogen atoms (as protons and electrons) from H2O or hydrogen sulfide towards carbon dioxide, eventually producing glucose. These electron transfer steps ultimately result in the conversion of the energy of photons to chemical energy.

<span class="mw-page-title-main">Biohydrogen</span> Hydrogen that is produced biologically

Biohydrogen is H2 that is produced biologically. Interest is high in this technology because H2 is a clean fuel and can be readily produced from certain kinds of biomass, including biological waste. Furthermore some photosynthetic microorganisms are capable to produce H2 directly from water splitting using light as energy source.

Dioxygen plays an important role in the energy metabolism of living organisms. Free oxygen is produced in the biosphere through photolysis of water during photosynthesis in cyanobacteria, green algae, and plants. During oxidative phosphorylation in cellular respiration, oxygen is reduced to water, thus closing the biological water-oxygen redox cycle.

<span class="mw-page-title-main">Light-dependent reactions</span> Photosynthetic reactions

Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

Water oxidation is one of the half reactions of water splitting:

<span class="mw-page-title-main">Dioxidanylium</span> Ion

Dioxidanylium, which is protonated molecular oxygen, or just protonated oxygen, is an ion with formula HO+
2
. It is formed when hydrogen containing substances combust, and exists in the ionosphere, and in plasmas that contain oxygen and hydrogen. Oxidation by O2 in superacids could be by way of the production of protonated molecular oxygen.

<span class="mw-page-title-main">Water oxidation catalysis</span>

Water oxidation catalysis (WOC) is the acceleration (catalysis) of the conversion of water into oxygen and protons:

References

  1. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  2. Yano, Junko; Kern, Jan; Yachandra, Vittal K.; Nilsson, Håkan; Koroidov, Sergey; Messinger, Johannes (2015). "Chapter 2 Light-Dependent Production of Dioxygen in Photosynthesis". In Peter M.H. Kroneck and Martha E. Sosa Torres (ed.). Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Metal Ions in Life Sciences. Vol. 15. Springer. pp. 13–43. doi:10.1007/978-3-319-12415-5_2. ISBN   978-3-319-12414-8. PMC   4688042 . PMID   25707465.
  3. Greife, Paul; Schönborn, Matthias; Capone, Matteo; Assunção, Ricardo; Narzi, Daniele; Guidoni, Leonardo; Dau, Holger (2023). "The electron–proton bottleneck of photosynthetic oxygen evolution". Nature . 617 (7961): 623–628. Bibcode:2023Natur.617..623G. doi: 10.1038/s41586-023-06008-5 . PMC   10191853 . PMID   37138082.
  4. 1 2 Raven, Peter H.; Ray F. Evert; Susan E. Eichhorn (2005). Biology of Plants, 7th Edition. New York: W.H. Freeman and Company Publishers. pp. 115–127. ISBN   0-7167-1007-2.
  5. Raval M, Biswal B, Biswal U (2005). "The mystery of oxygen evolution: analysis of structure and function of photosystem II, the water-plastoquinone oxido-reductase". Photosynthesis Research. 85 (3): 267–93. Bibcode:2005PhoRe..85..267R. doi:10.1007/s11120-005-8163-4. PMID   16170631. S2CID   12893308.
  6. Song, Jiajia; Wei, Chao; Huang, Zhen-Feng; Liu, Chuntai; Zeng, Lin; Wang, Xin; Xu, Zhichuan J. (2020). "A Review on Fundamentals for Designing Oxygen Evolution Electrocatalysts". Chemical Society Reviews. 49 (7): 2196–2214. doi:10.1039/C9CS00607A. hdl: 10356/153346 . PMID   32133479. S2CID   212416753.